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PREFACE
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could be done with some extra effort. (We now feel, though, that "some
extra effort" is something of an understatement).

The present text is based on the problems as they appear in the first
(1959) edition of the book. Professor Lehmann has informed us that he is
working on a second edition with extra problems, due to appear shortly,
but we have decided to confine ourselves to the first edition. To accommo-
date readers of the second edition in the matter of changed problem numbers,
we shall include a seperate addendum with a cross-reference list as soon as
the new problem numbers are available to us.

We thank Professor Lehmann for his support of our project, K. Snel for
his excellent typing of the manuscript and the Centre of Mathematics and
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CHAPTER 1

Section 2
Problem 1.

(i) For all x = 0,1,2,... we have

P{X = x} = P[m-1 successes in the first x+m-I trials,

the (x+m)th trial is successfui]

Plm-1 successes in the first x+m-1 trials]

Plthe (x+m)th trial is successfull

<x+m—1>pm-1(]_p)x+m—1—(m—])p - <m+x—])pm(1_p)x.

m~1 X

(ii) Let Xt denote the number of events occurring in any time interval of

length t. Then for t > 0O

P{T > ¢t} = P{xt =0} = M
and hence
p(t) = & B{T < ¢} = e 7P,

(iii) Let F(x) = P{X < x} for all x € R; then F(a) = 0, F(b) = | and F is

right-continuous, that is
lim F(x+€) = F(x), x € R.
e¥0

Define for all x ¢ [0,b-a]

f(x) = F(x+a) = F(x+a) - F(a).

The assumption that the probability of X falling in any subinterval of

(a,b) depends only on the length of the subinterval, implies that



£(x) = F(x+ty) - F(y)

for all y ¢ [a,b] and % ¢ [0,b-y]. Moreover, by this assumption it follows
that P{X = x} = 0 for all x ¢ (a,b) and hence f is continuous on [0,b-a].

For all x,20,x,20,...,x_ 20 with x, +x. +...+%x < b-a
1 2 n 1 n

2
f(%x.\ = F(%xi+a>

\i=1 1/ \i=1
n i-1 i-1

{F(x. + X x,+a) - F( z x.i-a>} + F(x]+a)
i=2 1 j=l J j:] J

n n
= Ezf(xi) + f(xl) = iz]f(xi).

Hence f(b-a) = f(Z?=] n—](b—a)) = nf(n_l(b—a)) and thus f(n_l(b—a)) =
n—]f(b—a) = n—], since f(b-a) = 1 by definition. Therefore, f(kn-l(b—a)) =
knyl for all k,n € N. By the continuity of f it follows that f(y(b-a)) = y
for all y ¢ [0,1] and thus f(x) = x(b—a)_l, 0 < x < b-a. Since

PO = - FOO = A fxma) = (b-a)”!

for all a < x < b, X has the rectangular distribution R(a,b).
(cf. also RUDIN (1970) pp. 50-52.)

Section 5

Problem 2.

For L the square of the error, unbiasedness of § is equivalent to
251 2 '
(n YO - ¥T(0) = 2n(B){y(8") - v(8)}

for all 6 and 6', cf. Example 12.

If h(6) = y(B) for all O, it therefore immediately follows that § is

unbiased.

Let § be unbiased. Assume that Y(@O) > h(@o) for some 60 € Q. Since
A=1{6¢eQ:v() > h(SO),Y(GO) > h(6)} is a non-empty (60 € A), open

subset of Q (continuity of v and h) and Y is not constant in any open



subset of {}, there exists 81 € A satisfying Y(Gl) # y(eo). If v(8y) > Y(GO)
then v(8;) > v(8y) > h(€;) (8; € A), and hence YZ(GO)-Y2(61) =

{y(8g) + v (O HY(8g) = ¥(81)} < 2n(8){¥(8y) - v(81)}, in contradiction with
(1). If v(8;) < ¥(8p) then h(By) < Y(By) < Y(8y) (B; ¢ A), and hence
v2@1) - ¥2(8) < 2m(8g){¥(8,) = ¥(8)}, again in contradiction with (1).

In a similar way the assumption Y(6y) < h(8y) for some B ¢ © leads to a

contradiction, implying that Y(8) = h(0) for all 8 ¢ Q.

Note that in this solution the connectedness of the parameter space § has

not been used!
(LEHMANN (1951))
Problem 3.

(1) If aj,a € R satisfy a, $ a, then

2 17 72
ly-a,| = ly-a;| = a,-a, for all y < a,
and
- - - - >
|y azl ly all 2 a; -a, for all y a.
Let m be a median of the random variable Y; then for m < a, < a,

E{IY-azl f [Y-é]|} 2 (az—al)[P{Y < al} - P{y> al}]

= (az—al)[ZP{Y < al} -1l =0

with strict inequality if a < a, and a

symmetry this inequality is also valid in the case a, < 2 < m.

is not a median of Y. By

(ii) From formula (9) on ©p.12 we see that the estimate §(X) of v(8) is

unbiased with respect to the loss function L(6,d) = IY(G)-d] iff for all
9,0" ¢ Q
(2) Eglv(8") - 8(x)| = Eglv(8) - 80 ].

1f v(0) is a median of &(X) for each 6, then (2) holds in view of (i).
If for some 6 ¢ ), say 90, Y(GO) is not a median of §(X), then
Y(GO) é [m_(eo),m+(60)]. (Note that m—(eo) and m+(90) are medians.) Assume



Y(83) > m'(8,). The set A = {8y Y(8) ~m"(8y) > 0,y(8,) ~m' (8) > 0} is a
non-empty (9 € A) and open subset of Q (continuity of Y and m+). Since

Y is not constant on the open set A, there exists 6 € A with Y(Gl) # Y(GOX
1f Y(G ) < Y(e ) then m (90) < Y(@ ) < Y(G ). In view of (i) this implies
Ee {IG(X) Y(S )[ - IG(X) Y(G )I} > 0, in contradiction with (2). Inter-
changlng the role of 6 and 91 a contradiction in the case y(e]) > Y(OO)

is obtained.

In a similar way it can be shown that the assumption Y(GO) < m_(eo) leads

to a contradiction. This completes the proof of (ii).

Note that in this solution the connectedness of the parameter space I has

not been used!
(LEHMANN (1951))
Problem 4.

The assertion stated in Problem 4 is not correct as is shown by the
following example.

Let © =D = {0,1}, Wy, = 0, V(0,0)
The rule §, given by PO{5(X) =1}
R(0,8) = 1.

0, V(0,1) = 1, h(0) = 1 and h(l) =
1 and PI{G(X) = 0} = 1, is unbiased and

To avoid this kind of examples we impose an extra condition that the

infimum of h on Wy s not attained.

Let § be an unbiased procedure and let R(6,8) be the risk function. We
suppose that h 2 0 and V = 0. Let 6 ¢ Wys that is, d is the unique correct

ducision for 6, Then we have
R(6,68) = EeL(G,G(X)) = h(G)EeV(d,G(X)).

There exists 0' ¢ Wy with h(8') < h(8) because of our extra condition.

Since § is unbiased we have

EeL(G',G(X)) 2 EeL(e,6(X))
and hence

h(e’)EeV(d,d(X)) 2 h(e)EeV(d,G(X)).



With h(8') < h(8) and V = 0 it follows that EeV(d,G(X)) = 0 and therefore
R(6,8) = 0.

Since © was arbitrarily chosen we have R(0,8) = 0 for all 6§ ¢ Q.

Take in the example, wd ={6:0= (d,a)}, n(9) = a_2 and V(d,d') =
(d—d')z. Note that the infimum of h on Wy is not attained and the result

follows.

The extra condition above can be replaced by the condition: 1nf9€w h(8) =0

This condition is also satisfied in the example mentioned in Problem 4.
(LEHMANN (1951))
Problem 5.

Suppose G is a group of transformations that leaves the decision problem

invariant. Let g ¢ G and 6, € C, then (g-])*ﬁlg e C and

R(9,g*50g_1) = EeL(B,g*cSog_l(X)) = EeL((g)“e,aOg“(x)) -
Eisy-lp LU 10,6, (®) = R(@® 0,8 <
R '0,(27)"8,8) = R(B,5)).

in

Since 8, was arbitrarily chosen g*dog-] uniformly minimizes the risk
within the class C. But 60 is unique, so 60 = g*éog_1 for all g ¢ G,
implying that 60 is 'invariant.

1f 50 is unique only up to sets of measure 0 (i.e. if 62 also uniformly
minimizes the risk w1th1n the class C then P {6 X) ¢ 6 (X)} = 0 for all
8 ¢ ), then 6 = g 60g except on a set Ng of measure 0 and hence 60 is

almost invariant.
Problem 6.

(i) Let C be the class of unbiased procedures. Let § ¢ C. Since g_l(X)

has distribution P(—)—le and L(ée,g*d) = L(B,d) for all 6 ¢ Q, d ¢ D and

g € G, we have

v o re 1 = ¥ =
EeL(e '8 6g (X)) - E(g)“le L(e 8 S(X)) =

— =1, =1 -
E(é)-]e L{(g) 8'.8(X)) = E(é)—le L((® '6,8(x)) =



- EeL(e,g*Gg"(X)).

Hence g*Gg—] e C and by Problem 5 60 is almost invariant.

(ii) TFor any 6,0' there exists § (by transitivity of G) such that

(3 BGL(8',60(X)) = EQL(E0,8,(X)) = E4L(6,(g") '6,(X)) =

1

= R(8,(g*) 6

O)'

. , . . *x .
Since 60 is (almost) invariant and G° is commutative, we have for all

g,h € G (except on a set of measure 0)

1

...l - -
(") 7 8oh = (897 n%s = ¥ (g*) s,

and hence (g*)_IGO is also (almost) invariant. Therefore,

1

(4) R(0,(g")'63) = R(8,8) = E4L(8,8,(X)).

o)
Combination of (3) and (4) completes the proof.
(LEEMANN (1951))

Problenm 7.

Let 8 = (£,0°) and L(0,d) = (E-d)%0™2.
First consider G]. Let g € G], that is g(x) = x+b. Then g is given by gb =
(£+b,02) and g* by g*d = d+b. Note that L(ge,g*d) = L(6,d). Since ng;d =

* _ Z o = JF ¥ * . . .
gl(d+b2) = d+b2+b] gz(d+b1) gzgld, G] is commutative. G] is not

transitive, e.g. there does not exist g € Gl satisfying g(0,1) = (0,2).

An estimate §(x) is invariant iff 8(x+b) = 8(x) +b for all b,x ¢ R,

implying that the set of invariant estimates is {§ : §(x) = x+c, ¢ ¢ R}.

2

Hence, if § is invariant R(6,8) = Ee(E—X—c)ZG“2 = l+c 0_2, which is

minimized by choosing ¢ = 0. Therefore, the best invariant estimate

relative to G1 is X. By Problem 4 it is seen that 8(x) = x is biased.

Next consider G,. Let g ¢ Gy that is g(x) = ax+b. Then g is given by
go = (aE+b,a202) and g* by g*d = ad+b. Note that L(g0,g*d) = L(0,d). Let

(EI’O?) and (52,02) € 2. Taking g(x) = 020;]x4-£2-02011€] we obtain
g(EIO%) = (EZ,O%) and hence G, is transitive. G2 is not commutative, for

2
let gTd 2d and g;d = d+1; then g?g;d = 2d+2 and gzgtd = 2d+1, An estimate



§(x) is invariant iff 8(ax+b) = ad(x) +b for all a eiR+, beR and x ¢ R,
implying that 6(x) = x is the only and therefore also the best invariant

estimate relative to G2. By Problem 4 it is seen that 8(x) = x is biased.

(LEHMANN (1951))
Section 6

Problem 8.

(1) First it is proved that the conditional probability density of 0
given X = x equals W(G]x) = p(G)pe(x)/ IQ p(e')pe,(x)d6'. For every Borel

set B and every Borel set w' we have by Fubini's theorem

P{X € B,0 c w'} = [ [ pg(x)dxo(8)d8 = [ [ po(x)p(0)dbdx
w'B Bw'

L}

-1
pe(x)p(e){Ip(e')pe.(x)de'} b | p(8)p,(x)dbdx
Q Q

B
f P{O € w'|x = x}£(x)dx,

B

where f(x) = JQ p(e)pe(x)de is the probability density of X. Next it will
be shown that if there exists a rule 60, which minimizesj‘L(G,G(x))ﬁ(elx)de
for each x, then § is a Bayes solution iff § = 60 a.e. ux. Here UX denotes
the probability measure induced by X. So, suppose that such a rule 60

exists. Since by Fubini's theorem

J EgL(8,80(X))p(8)d0 = [f L(B,8,(x))pg(x)p(8)d0dx

JJ 108,845 (x))m (8] x)dof (x)dx

A

JI 18,8(0)m(6]x)d0f (x)dx = [ EGL(8,8(X))p(8)d0,

60 is a Bayes solution.
Suppose 61 is also a Bayes solution. Define wi(x) =J'L(9,6i(x))ﬂ(6|x)d9
(i = 0,1), then I wo(x)f(x)dx = f m](x)f(x)dx and mo(x) < w](x) for all x.

This implies wo(x) = wl(x) a.e. uX.

(ii) The loss function in Example 11 is defined to be



L(.,.) dy d,
0 € wo 0 b
0 € w] a 0
Hence
afw W(Glx)d9=aP{O€w1|x} if cS(x)=d0
J L(8,8(x))m(8]|x)d6 ={ I
bf m(O|x)a®=bP{Ocw, |[x} if S(x)=d
wo 0 1
and
d0 <
() =1 d, if aP{0 € w [x} > bP{O « wolx}.
do or dl =

According to (i) a Bayes solution is almost equal to 60.

(iii) a) [ L(6,8(x))m(6|x)dd = [ (g(e)-a(x))zn(e]x)de = §%(x) -

28(x) | g(e)ﬂ(elx)dei-f gz(e)ﬂ(e]x)de, which is minimized by choosing
8(x) = [ g(®)m(8]x)d6 = E[g(O|x)].

b) [ L(8,8(x))m(8|x)d0 = [ |g(8) = 8(x)|m(8]x)d0, which is minimized by

choosing 8(x) is any median of the conditional distribution of g(0) given

x (cf. Problem 3(i) with m = al).
Problem 9.

(i) In this example we have = {HH,HT}, the sample space X = {H,T},
D = {HH,HT} and the randomized procedure Y is given by P{YH = HT} = p
and P{YT = HT} =1, where 0 < p <.

Then the risk function of Y equals

R(HH,Y)
R(HT,Y)

PL(HH,HT) = p and
$(1-p)L(HT,HH) = }(1-p).

The maximum risk is minimized for p = % and equals %u Note that the maximum
risk of the four nonrandomized decision rules is always greater than or

equal to }; so randomization reduces the maximum risk.

(ii) 1If we replace HH by AA and HT by Aa, the only difference with (i) is

that we assume an a priori probability p for AA. The Bayes risk equals



r(p,Y) = pR(AA,Y) + (1-p)R(Aa,Y) =

po+ (1-p)§(1-p) = ip(p-%) + 1(1-p),

which is minimized by choosing p = 0 if p > 3, p =1 if p < %.

Problem 10.

A randomized procedure YX based on an observation x can be characterized by

is takenl X=x] =p{y =4d1.

n, = Pldecision dy x o

For such a procedure we have

a,E,(1-n,) 1if 6 ¢ Q
R(8,Y) = EgL(0,¥) = { ' 0 X 0

aOEenX if 0 € Q].
If a, = a; = 0 all procedures are both minimax and unbiased. Therefore,
suppose a + a, > 0.
Now Y is minimax iff
(5) sup R(0,Y) = max {sup u,E,.(1-n,),sup a.E.n_}
665 ’ 6580 170 X ’9681 076"

< max {sup a E (1-n!),sup a.E.n'} = sup R(O,¥')
8y | 0 Xac 09X g

for all Y'; and Y is unbiased iff
EeL(e',Y) > EeL(e,Y) for all © and 6°'.

Because L(8',:) = L(B,:) if 6 and 6' are both in QO or both in Q], we only
have to consider the case 0 ¢ QO, B' ¢ Ql (the case 98' ¢ QO’ 0 € Ql is
treated similarly). This gives us

Y is unbiased iff

aOEel’]X 2 alEe(]_nX) R(6,Y) for all 8 ¢ QO

and a]Ee(l-nx) > aOEenX = R(6,Y) for all 6 ¢ Ql,
which is equivalent to

(6) Y is unbiased iff R(6,Y) < aoa](aoi-al)_] for all 6 € Q.



(i) Let Y' be the procedure defined by

-1
LI
ng a](aoi-a]) for all x.
If Y is minimax then supgy R(8,Y) < supg R(6,Y') = aoal(ao-i-a])_l and hence

Y is unbiased.

(ii) Let Y be a randomized procedure. First it will be shown that the
continuity of PG(A) for all subsets A of X implies the continuity of Eenx.
Note that EenX = Pe{Y = do}, but {Y = do} is not a subset of X. Let € > Q.
Define a, = i€ and A, = {x : ie < n, < (i+1)e}, i= 0,1,2,...,8_ = [8'1],
where [t] denotes the integral part of t. Then we have
Ne Ne
.Z aiIAi(x) sn < )E

o,T, (x) + €,
A
i=] i=1 T4

So, Eenx is the uniform limit of continuous functions of O and must itself

be continuous.

It is assumed thst QO and Q] have a boundary point in common, say 90. Hence

(7) sup R(6,Y) = max {sup a E, (1-1.) sup a.E.n.}

et Bty 10 Xeen 00X

> max {alEeo(l—nx),aoEeonX}
>——:a—0——aE (l—n)+—al—aEn=aa(.a1+a)_1
" agta; Cl B 'y agta; 0 B0''x T 20%1'%%) -

From (6) it follows that an unbiased randomized procedure attains the

lower bound in (7). Hence Y is minimax.

Problem 11.

(i) Let Y be a randomized procedure. Define the procedure Y' by

v! _ Y,.
aP ¥(d) = N ! ap Bi¥

I M=

. (gid)

for all x ¢ X. Then we have by the invariance of the problem

(8) R(6,Y') = EL(0,Y") = ] L(e,d)dPYX(d)dPe(x)

- Y,
= ff L(8,d)ap glﬁg;a)dpe(x)

M=

1=]



Yy o«
JJ L,d)ap x(gid)dPgie(X)

I M=M=

M=

- * YX* _ ol -
[J L(g;0,g;d)dP (gid)dPéie(x) =N R(E;0,Y).

i=1

He

The fact that Y' is an invariant procedure follows on observing that for

any j = 1,2,...,N

( f)—l Y,...
ap o dp gngx(gngd).

Y!. Y. -
83%(q) = ar ng(g;d) =N 1 ]
1

™M=

i
Now (ii) on p. 1! implies that gzg; = (gigj)*. Furthermore, since G is
a group, gigj takes on the same values as g; as i runs from ! up to and
including N, whence it follows that

=1

N 1

Yo.o. - Yo.x Y!
dp gngx(g;gfd) =§! £ qp 8 (g{d) = dp *(a).

N
=1 J i=1

1

Now suppose that Y is a minimax procedure, i.e.
(9) sup R(6,Y) = min sup R(0,Z),
0 Z 8

where Z runs through all randomized procedures. Then by (8) and (9)

N
sup R(,Y") = N I sup R(E.0,Y)
8 i=1 *
...IN'
=N Z min sup R(0,Z) = min sup R(8,z).
i=1 Z 5] Z 6

On the other hand, Supgy R(B,Y") = minz supeR(G,ZL implying that Y' is a

minimax procedure, thus establishing part (i).

(ii) Let 6 = T Moeeet for some n, and let X = 6Y, where P{Y = a} =

P{Y = a” !} = p{y

[ ]

invariant procedure. Then in view of the invariance

P{u = 8} = z P{u, = o}p{y = y}
ye{a,a~1,b,b"1} by

1

= b3 P{U, = v 1 = tp{u < {a,a ',b,b" 11} < 4,

ye{a,a”1,b,b"1}

that is R(6,U) = P{U # 6} = %. So, any invariant procedure U with

b} = P{Y = b '} = 1. Let U be any (possibly randomized)



P{Ue € {a,a—l,b,b_l}} = | minimizes the maximum risk (for instance, the
nonramdomized decision rule 8(x) = xa). In such a case the risk function
R(0,U) equals %.

Now let V be the procedure described in the hint. Then

P{V=06}=P{V=m ...m }> b P{v, =0JP{Y = y} = ,
1 n ye{a,a'],b,b_l} by
y# gl
that is maxg R(6,V) < }.

(PEISAKOFF (1951), KIEFER (1957), KUDO (1955))
Section 7

Problem 12.

(i) To obtain the Bayes solution we have to maximize the expression

n_1 ., EeiG(ei,G(X)), where § is a decision rule and

1=1]
a(8,) if i = j

G(8;,d.) ={ *

J 0 otherwise.
Since
—ln —an'
n Ep.G(6.,8(X)) = n b a(B.)L (0.)dx
(] >
j=1 o+ 1 i=1 {x:8(x)=0,} - * %

n

<2l oz max {a(8,)L (9,)}dx

i=1 {x:8(x)=6;} i
_ -1
=n m?x {a(ei)Lx(ei)}dx
with equality iff, for a.e. x, we choose 8(x) = ek, where ek =

ek(x)
satisfies max. a(ei)Lx(ei) = a(ek)Lx(ek), i.e. if § is the maximum

likelihood procedure. So we see that the Bayes solution coincides with

the maximum likelihood procedure (a.e.).

(ii) 1In Problem 8 the a posteriori density is defined as ﬂ(elx) =

p(e)pe(x){f p(e')pe,(x)de'}_l. If O is uniformly distributed on (0,1) then
(10) mgx m(8|x) = max {pe(x)/ I pe,(x)de'}.
6

Let B be the maximum likelihood estimate, i.e. pé(x) = maxg pe(x). In view
of (10)



-~ -1
m(8]x) = P@(X){f Pe.(x)de'} = mgx m(0]x%),
that is, 8 is the mode of the a posteriori demsity of O given x.

Problem 13.

By formula 14 on page 15 the likelihood ratio procedure takes decision d0
1

or d, according to whether 5UPg ey, L (8)/ suPgey L (8) >a a ' or < aa-l,

1 0 10

(i) Here wy = {(g,oz) : & < 0}, wy = {(5,02) : £ 20} and log LX(G) =
~inlog2m - %nlogc2 - %Z?=](xi-€)20 2

2

Differentiating with respect to 0° we see that

rMp

an - osw LG =L (' 5 x-0)?)

0%>0 i
- -1 1 1 o1
= em il 5 (xi—g)z} M0
i=]
holds. Define

a Ab=min (a,b) and a V b = max (a,b).

In view of (11) the likelihood ratio procedure takes decision d. when

0
“lpn, - : ~in =1
(2m) " n ‘z‘i‘=1 (= @ A 02T g
> e
[ R | >
(2my ™a ' s N CIRN R 0))%}7m 20 )
i.e. when
2 - 2 ;2 - 2 1
oy - @A’ Ty - @) .
. i . i
i=1] 1=]
. n 2 n =2 =2 . . . .
Using Zi=] x; = Zi=] (xi = %X)7 + nX” this may be written in the required
form.

2 2} w,

(ii1) In this case w {(E o ) : 0" <o 2 2}

= {(&,0 ) 107 2 g},
Differentiating log L (E g ) with respect to E we obtain

sup log L (E o ) = log L (x o )
EcR

n
= -inlog 2T - inlog 02 - %0_2 x (xi--ii)2
i=1



d - 20, =4, 2 2 .. 2 _ -1_n o2
Since o7 log Lx(x,o ) = ino (sn 0°) with s, =1 Zi=l (xi ®)“, the
likelihood ratio procedure takes decision d0 when
2m) £n(s A G ) ~in exp {-1 ins / (si A 02)} {
S
-In -In 2 ’
(2m) (sn v 00) exp {- éns / (sn v 00)} 0

i.e. when
=1

(q, v q, ) exp {(1=q ) A (q -D} > e,

here = 20-2

Wl 9, = 8.9, -

be written in the required form.

By discerning the four cases q

Section 8
Problem 14.

(1) In Problem 10 we have seen (cf. (6)) that

(13) § is unbiased iff R(8,8) < a, (a 4-a1)_] for all 6 ¢ Q.

20

Let 60 be an unbiased procedure with uniformly minimum risk and suppose

that 60 is inadmissible., Then there exists a procedure 61 with

(14) R(e,dl) < R(6,60) for all 6 € Q

R(e,dl) < R(e,ﬁo) for some 9 ¢ Q.

02 l(ao-i-a])--1 for all 6 ¢ © and
aga, (a +a ) for all 6 ¢ Q. By (13) 61 is unbiased.

Because 60 minimizes the rlsk uniformly among all unbiased procedures, a

Since 6 is unbiased we have R(B 60) < a
hence R(G,GI)

contradiction with (14) is obtained. So 60 is admissible.

(ii) 1In the text of the problem the loss function is defined as L(6,d) =
(d-e)z. This seems to be a misprint. In this solution we take the natural
loss function L(8,d) = (d-e_e)z.

By Problem 2 we have

§ is unbiased & EeS(X) = e_e for all 6 ¢
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& ¥ d(x)exe-e{x!(l— e_e)}-] =e® for all 6 ¢ Q

x=1
s -1 -6 _ 2 +lg
e I 8xFENDT =1-e" = 5 D¥1e* T for a11 6 ¢ 0
x=1 =1
o 8(x) = (-1)* x=1,2,...
Therefore, GO(X) = (—])X+] is the unique unbiased estimate. Define
_Jo . . even
6](x) = {l if x is odd.
Then for all 8 ¢  we have R(9,§ ) = %(1-e ) < (li-ehe)(l-e—e) =
1-e ~20 R(G,ﬁo). So 60 is inadmlss1b1e.

(LEHMANN (1951))
Problem 15,

We use randomized procedures in this problem, which are denoted by capitals
(this differs from the notation in the statement of the problem).

Let Byoe e a8y be the N different elements of the finite group. Let Y(o) be
a procedure that uniformly minimizes the risk among all invariant procedures.

(0)

The invariance of Y implies

(0)
R(8,v) = ff L(0,a)ap" % (@)apy(x) =

v€0)
ff L(§;8,d)dp glx(d)dP (x)

]
It

(0
IS L(éie,gzd)dPYx (D P, (x)

y(0)
I LE, e * (@apy 0 r(g,6,v'?)

i

for all ® ¢ Q and i ¢ {1,...,N}.

Suppose that Y(O) N

is inadmissible. Then there exists a procedure Y that

dominates Y(O). Define the procedure Y by
N Y(l)
Y -
P X)) = N £ ap B1%(q).

i=1

In Problem 11 it is shown that Y is invariant and R(0,Y) =

N-] Z§=l R(g 6 Y(])) for all 6. Since



'y or@0,v9) < ree,v @)

R(§ie,Y(])) <N
1

1 i

=
™M =
™=

1

(0)

for all 6 with strict inequality for some 0,Y dominates Y in contra-

(0)

diction with the definition of Y(O). So Y is inadmissible.

Problem 16.

(1) We first show that the problem is invariant. We verify Lehmann's
conditions on p. 11.

Let P be the set of distributions of the form P{X = 0-1} = P{X = 6+1} = i
for 6 € R.

I° = P{X = 0-1} = P{X+c = B+c-1} = P{gX
= P{X = 041} = P{X+c = O+c+1} = P{gX
g0 = 0+c is 1:1 and g0 = Q.

9+c—]}} distribution

B+c+1}

Nl b=

of gX also in P.

]

¥ g*d = d+c is a homomorphism by linearity.

4 L(g8,g"d) = min (|B+c-d-c|,1) = L(8,d).

Next we derive the invariant estimators which uniformly minimize the risk.
An estimator Y is invariant iff dPYX(d) = dPYX+c(d+c) for all x and ¢, or

Y Y
iff dP %(d) = dP 0(d—x) for all x. Furthermore,

R(6,Y) = [f L(@,d)dPYX(d)dPe(x)=,fj L(e,d+x)dPe(x)dPYO(d)

=4 (fa-1] A 1)+ (Jar1] A 1)aR Oca)

[\
o

§P{y, = 1) + P{Yy = -1} + 4Py, ¢ {-1,10} = }

with equality iff P{YO e {-1,1}} = 1. Therefore, R(8,Y) is minimized by
taking P{YO e {~1,1}} =1, i.e. by taking the values X~1 and X+1 with
probabilities p and q (independent of X). Note that for invariant

estimators the risk does not depend on 0.

(ii) For the (nonrandomized) rule 51 the risk does depend on 6. Let

0 < ~1, then 0-1 and 6+1 are both negative, so P{X < 0} = 1. Hence
R(e,al) = EgL(8,X+1) = §.

Similarly, R(9,61) =4 for 6 2 1. But if -1 < 6 < |, then -1 < 0 and
6+1 =2 0, so R(G,ﬁl) = 0.

The rule 6] dominates any invariant estimator which uniformly minimizes
the risk. This implies that the conclusion of Problem 15 need not hold

when G is infinite.



Section 9

Problem 17.

Suppose that T is not minimal sufficient. Then there exists a function f
such that U = £(T) is sufficient and k],kz,...,kr are the solutions of the
equation f(t) = u for some u and some r > 2, where ki e {0,1,...,n} for
all i = 1,2,..7,r and ki # kj if i # j. This means that for any
jed{t,2,...,r},

P{T=kj | U= u} P{T=kj,f(T) = u}/P{U = u}
' k: —k:
P{T = k) ) <§}>P I(1-p)"7]

r _ r n ki __\0-k{ °
Z]'_=v1 P{T = ki} Z:l'.=] (ki) p ~(1-p)

This expression depends on p, since r > 2, and hence U is not sufficient,

implying that T is minimal sufficient.
Problem 18.

(i) Since T = max (Xl""’Xn) € (0,9), we only.have to consider the
conditional distribution of X]""’Xn given T = t for t ¢ (0,6).
For all t ¢ (0,0) and X, >0 (i=1,...,n) P{Xl < x

seeesX < x ,T< t} =
o~ 2 (£ A xi). On the other hand

1

i=1

P{XI'S X, e

1°"°"°"n
= J P{X] < xl""’Xn < X I T = u}nun-IG_ndu,
(0,t)
implying that P{X] < x],...,Xn S x | T = u} is independent of 6. There-
fore, T is sufficient by the definition of sufficiency.
With
g7 < 1 >
ge(T(x)) ={:0 if T § 6 and h(x],...,xn) ={ . if ?é?sn X, ) 0

in formula 20 on p. 20 it follows by the factorization criterion that

T is sufficient.

.. . . n
(ii) With T(xf,...,xn) = (min (Xl""’xn)’ Zi=1 xi),



n
_Ja exp (nab-aty) . > _
g(a,b)(tl’tZ) -{O if ¢, < b h(xl,...,xn) 1

in formula 20 on p. 20 it follows by the factorization criterion that T

is sufficient.
Problem 19.

Suppose T satisfies formula 20 onp. 20, then

pg’Y<t,y> = 1317 g, (0o,

where x and (t,y) correspond to ome another with respect to the mapping

given by formula 17 on p. 19. Hence
T,Y _ -1
g (£sy)dy = go(r) [ |3Cx(t,3)) | n(x(t,y))dy.
Therefore, by formula 19 on p. 19
Yit, . _ -1 iy =1 . .
Py ()= |3,y | hx(e,y)) /[ [3G(e,y' )] iz (t,y "))y,

and thus is independent of 6, implying that T is sufficient for 6.

Suppose T is sufficient, the pg t(y) is independent of 6 and we may

delete the subscript 6. From formulae 18 and 19 on P. 19 we get

X TY Y|T T,Y

Pe(x) = pg” (T(x),Y(=x)|J| = p | (X)<Y<x)>1'pe’ (T(x),y")dy'|J].
Thus functions &g and h can be defined to satisfy fofmula 20 on p. 20 by

8o(t) = J by (£,y)dy" and b = ' 1T (v |a].
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CHAPTER 2

Section 1
Problem 1.

This problem can be found as Theorem (21.6) in HEWITT and STROMBERG (1965)
pp. 380-381.

Section 2

Problem 2.

(1) This follows from Theorem (19.24) and definition (19.43) in the
above book, pp. 315, 316, 328.

(ii) By (19.44) of the same book (p. 328) the result is established.
(iii) Since

dv _
EG =1 a.e. v,

application of (ii) yields

_4v _dvdu

1 = v du dv a.e. Vv
and hence

dv _ [du)"!

au = \dv) a.e. U,Vv.

(iv) TFor each A ¢ A we have

n n duk
e e BN

k=1

| =]

k

and therefore
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yel

E—Ekfl—fk~= 2 EBE a.e, A
ax N ree A

By Lebesgue's monotone convergence theorem and the definition of the finite

measure MU we have

®© n du n du
WA = T ow(4) =lin I [ —Kax = Lin f = ax =
' k=1 oo k=] 5 d oy k=1 dA
n
. n du d X My
= | lim -Exlid)\=flim——1;xl————d)\,
A Do k=1 A Do

implying that i is absolutely continuous with respect to A, and that

n
d Zk=1 Hy _au
dx ax

lim
oo

Section 3
Problem 3.

Let X =R, let A be the Borel sets of R and let AO ={A :Aor R is a
countable subset of R}. Then AO is a o-field, AO < A and AO # A. Suppese
there exists a function T such that T_I(B) = AO'

Let A ¢ A and T(x) ¢ T(A); then T(x) = T(a) for some a ¢ A. Since {a} ¢ A

1 0

and AO = T—](B), there exists a set B ¢ B such that {a} = T  (B). Because
T(x) = T(a) this imﬁlies X € T_](B) = {a} and hence x = a. So, T_I(T(A)) IS
A. We always have A c Tnl(T(A)) and therefore T_I(T(A)) = A e A, implying,
by definition of B, T(A) ¢ B and hence A = T_I(T(A)) € AO’ in contradiction
with AO # A,

So there does not exist a function T such that T—I(B) = AO'
(BAHADUR and LEHMANN (1955))

Section 4
Problem 4.

First (iii) will be proved. Then it will be shown that (i) and (ii) are
special cases of (iii).

(iii) Let B ¢ Bn, the Borel sets ofIRn, and let f be a Bn—measurable
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and P-integrable function. Then we have

Tr_ | £(g, T(x))h(g T(x))
IT—](B) k=1 = k k 4P (x)
i h(g T(x))
_ r r f(g, g.x)h(g, g.x)
B kfl .E] Sy 2 11 (w) h(x)du(x)
J z 1 h(g. g X) {x:T(x)= ng}

r r
= Y ¥ J_] _.._f_(_}il_tl(x_)_]'_ (g g x)du(x)

k=1 j=1 (® z;] h(gigl';lx) {x:T(x)=g 1x} k
= Ji-1py E®E®,

where we have used that T(gx) = T(x) for all g ¢ G, iﬁplying gElgilx €

{x: T(x) = gjx} @xe {x: T(x) = gilx}. By definition of conditional
expectation the proof of (iii) is complete.

(ii) follows from (iii) by taking h(x) =

(i) follows from (ii) by taking r = n, gk(x],...,xn) = (xk,xk+],..., X
XiseesX 1), k=1,...,n, and T(x ST ) = (yl, ces¥ ).

n

n
(It should be noted that for each sample point (x ..,xn) the index i such
that X, = (]) = min (Xl""’xn) has to be unlquely defined; e.g. by

choosing the smallest such index in case of ties. Otherwise (yl,...,yn) is

not defined uniquely.)
Section 5
Problem 5.

Theorem 4 of Chapter 2 holds true if X is a Borel space, so in particular

if X =R". For a proof see BREIMAN (1968) pp. 79,401 or ASH (1972) p. 265.

Problem 6.

The independence of Y and T under PO implies
h(y,T) ] [ h(y,T) ]
E |22l | =5 |/ | yo
0[f<y)g<r> o[ EGyem | 7

and hence
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PIW) = J7 h(r,0av(®) = £ [ 2 g(r)av(e)

(y)e(t)
- hiy,T) | _ h(y,T) -
- f(y)Eo[f<y>g<T)] f<y’Eo[f<y>g<T> ¥ y]'

Section 6

Problem 7

(i)  Application of Problem 4 (iii) with G the group of all n! permuta-

(1),...,x(n)) yields for any

tions, h(xl,...,xn) = 1 and T(xl,...,xn) = (x
function f which is P-integrable for all P ¢ P E[£(X) | T(x)] = fo(x),
independently of P ¢ P, implying that T is sufficient for P.

(ii) From Problem 4 we know that E[f(X)[ Y=yvy] = fo(y), where we use the
notation introduced there. This means that Y is sufficient for P.

(iii) Let G be the group of 2%n! transformations given by

g(xl,...,xn) = (c]xi],...,cnxin),

where (i],...,in) is a permutation of (1,...,n) and c; = 1or ~I, i=

1,...,n. Defining

fo(x) = (2nn1)_1 I f(gx),
geG

we obtain by application of (the solution of) Problem 4 (ii) with
T(x],...,xn) = (w],,..,wn) that for any integrable function f
E[£(X) | Ww(x)] = fy(x), independently of P ¢ P, inplying that W is
sufficient for P,
(Note that in the solution of Problem 4 (ii) the group G may by any finite
group of transformations of x eZRn, not necessarily a group of trans-—

formations corresponding to permutations of coordinates.)

Problem 8.

Defining T(x), go(t), gl(t) and h(x) by

_ Ipi(x)/p,(x) if ph(x) > 0
T - {ml ° if pg(x) = 0 °

_ 1 if t € [0,)
go(t) - {0 if = 4

t
t if t ¢ [0,%)
g, (t) { ¢ =

1 if
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_ Jpa(x) if p(x) > 0
heo = {p?(x) i poC) = 0

if follows that pi(x) = gi(T(x))h(x) for i = 0,1. In view of (31), T is

sufficient for P.
Problem 9.

(i) Following the hint we see that PO(S) =0; on X-8§ Aj is absolutely

continuous with respect to PO and hence

n -1

z. P _+c.dP.

dp, ) dp ) < =1 ((co/n)d 0 ch J))
dP

n n
d Zj=0 chj d Zj=1 ((co/n)P0+chj) 0

n -1 -1
= ( x f, ) y
j=1 3
which is Ao—measurable.

By Problem 2 (ii) it follows that

n
d X, P,
dPO dPO =0 CJ i
dA n dA

By Problem 2 (iv) we have

n
d Z.=O Cij

lim —52 11 -,
o ax

Therefore

dp dp
d)\o = lim n ¢

o g 3, e,P,

=0 7373

since the limit of Ao—measurable functions is Ao—measurable, %%g is also
Ao—measurable.

Because P0 is arbitrarily chosen, we have by Lemma 1 and Corollary 1 that
T is sufficient for P.

(ii) Define A as in the hint for part (ii). By what we have just proved,

dPOO/(dPGO + d}) is Ao—measurable. Since

dp dp P -1
b _ % . g,
dA dPeO + dA dPeO + dX ’
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the result is established.

There are some misprints in the hint of (i): Z?= I/fj should be

1

o l/fj)_], and in the displayed formula the summation should be from 0

j=1
to n and not from ! to n.

=

(HALMOS and SAVAGE (1949))
Problem 10.-

The solution is given in the hint. There is one misprint: Lemma 3 (ii)

should be Lemma 3 (i).
Problem 11.
(1

x
the probability that decision di is taken when X = x. By Problem 10 there

Let Yx = (Y ..,Yim)) be a decision procedure basedon x, i.e. Yil) is

exists a procedure Z based on T such that
{1y _ (i)
2, = Elyy | £].

Note that by sufficiency this conditional expectation does not depend on

P ¢ P, the family of distributions of X. For each P ¢ P we have

_( 2 (1) _ B (i) _
R(P,Y) = [ 151 L(P,d,)Y ""dP(x) = izl L(P,d,)EY, " =

. = (i) _ o i) _
= 151 L(P,di)EE[YX | T] = izl L(P,d)EZ"" = R(P,2),

and hence the class of procedures based on T is essentially complete.
Section 7

Problem 12.

The first statement is proved by induction w.r.t. s. For s=1 the statement
is obviously true. Suppose the statement holds for s-1. Then for all

integers x 2 0
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1

g-
z

X
2 exp l-
i=1

s-1 y . -1 X~y ' -1
5 xJ.)(_z xJ.) (y1) ' exp (-A A {x-y) 1}

=1

X - - -
exp (-1) = <x>(x-x EY 27 = e Mg,
y=0 \¥ s s

1

all non-negative integers tl""’ts—] satisfying Zi;} t, £ ty we have with
_ s—1
tS = to Zi=] ti

where A = Z§= Aj' This completes the proof of the first statement. For

P{T] =t 0= to}

P{x1 =t;,..X =t X, = ts}/ P{izl X, = to}

= ts—lIT

At - U - S -
{ﬁ ) 1}/{e M 0t 1) I}=t0!A NP !

i=1

where A = Zi=l Ai and p; = Xi/k. This completes the proof of the second

statement.
Problem 13.

(i) The density of Yl""’Yn is given by

n -1
fn(yl""’yn) =nl T (20)  exp {—yi/(ZG)}, 0 < v, <.

<
<y ..
i=1 n
This implies that the density &, (y],...,yr) of Yl""’Yr equals
. . fn(y],...,yn)dyr+1...dyn
< <
Ve pa1™e %y
r
B B VIR s U St o < .
(ze)r (n-r)! P 26 ’ =¥ s = Yo

cf. ROHATGI (1976) pp. 150-152, .
.. .. . =1 .
(ii) Defining Zi(yl""’yr) = (n—1+l)(yi-yi_])9 » 1=2,...,r, and
Zl(yl""’yr) = nyle_1 it follows that Z§=l zi(y],...,yr) =
[Z§=I yi-+(n—r)yr]6"]. For all Borel sets Bl""’Br we have

P{Z] € B 2 € Br} =

127" %r

= e e .. 8 (¥, seersy DAY s.e.,dy
. n 7 1 r 1 T
{(yl,..,yr):zi(y],..,yr)eBr,1=1,..,r}
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-r r
= e v 2 exp (-4 X zi)dzl,...,dzr
{(z],..,zr):zieBi,i=l,..,r} i=1
r -1
=0T | Je ztdt,
i=1 B

i

and hence Zi has a chi-square distribution with 2 degrees of freedom and
. . r -1 _ or
Zys+++»Z are independent. Since [Zi=l Y, + (o r)Yr]G = Zi=l

a chi-square distribution with 2r degrees of freedom. Cf. also EPSTEIN and
SOBEL (1954), Corollary 2.
(iii) By Problem 1 of Chapter | it follows that Z],...,Zr are independent

Z., it has
1

and that Zi (i=1,...,r) has an exponential ditribution with parameter },
which is the same as a chi-square distribution with 2 degrees
of freedom. Since Yi =0 Z;=1 Zj we have for all Borel sets Bl""’Br

P{Y ¢ B Y e B}
1 r

| IR
= f....] Z—rexp (—%Zi

z.)dz,..dz
. 171 1 r
{(z z.):0'5Y 2,¢B. .z 20,1=1 r}
1"’ r . j=] j i’ i— » 3>

= ... _ (26')_rexp(—yr/(Ze'))dyl..dyr
{(yl,.,yr):OSylS"syr,yieBi,1=l,.,r}

and hence the density of Yl""’Yr equals

(201 exp (=y_/(26"), 0 < Yy S e Sy

Note that Yr/e' = Z§=] Zj. This implies that Yr/e' has a chi-square
distribution with 2r degrees of freedom.

(iv) A sample of n units (tubes) is randomly selected from a population
having an exponential lifetime distribution with parameter (26)_1, i.e.
Pllength of life of the unit < x] = | - exp (—(29)_]x). Each time a failure
occurs on the ith place (i=1,...,n), the unit is replaced by a new,
randomly selected unit. Let Ni(t) denote the number of failures at the ith
location. Since the times elapsed between consecutive failures are inde-
pendent and exponentially distributed with parameter (26)~], Ni is a

Poisson process with intensity (29)_]

(cf. Problem 1 of Chapter 1). Let
N(t) = Z?=1 Ni(t)‘ The sum of independent Poisson variables is also
Poisson distributed. So we see that the total numbers of events (i.e.

adding over i=1,...,n) in nonoverlapping time intervals are independently
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Poisson distributed, the number in an interval of length T having expecta-
tion n(ZG)-lT. Thus N is a Poisson proces with intensity n(28)—].
(EPSTEIN and SOBEL (1954))

Problem 14.

It is assumed that the statements have to be proved for § ¢ int O. Using

Theorem 9 (ii) the proof is straightforward.
Problem 15.

We write (35) in the following form

t MR

k-r
X _ ‘
dPe,ﬂ(X) = C(9,9) exp [i | eiUi(X) + jE] 0jTj(x)]dU(x).

Let (60,00) € . For any fixed t = t .»t . define the probability

120 K=

measure vt by
av_( -0(6000 (- E 60 )dPU/t (u)
Vt u) = : ,0) exp 2z Y 90,00 u),
where Ct(eo,ﬂo) is a normalizing constant. Then we have for all (6,8) ¢ 9

dPg/t(u)

x
ct(e) exp <i§l eiui)dvt(u),
cf. (37). Let

Q'=Q'(t)={e:jexp<

It MR

. eiui>d\)t(u) < o},

1

Define
. .
A(B) = {t : f exp <i§] Giui)dvt(u) = o},
We will prove (i) in the following sense:
If (8,0) € O then Py  (A(6)) = O.
>

Note that if t % A(B) then 6 € Q'.
So, suppose (0,#) ¢ Q, then
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T
[f ¢ (®) exp <i§] Giui>d\)t(u)dPr](je’0)(t) < w

and hence Pg’ﬂ(A(G)) = 0. (Note that by equivalence of the measures this
implies that Pg,’o,(A(G)) = 0 for all (0',8') « Q.)

(ii) By easy calculations it follows that § = {(61,92): GI< 0,6, <0J}.

So, the projection of @ onto 61 is {91 : 61 < 0}. The conditional density
of X given Y = ¥ > 0 is given by

X
peiyo(x) = (yo—e])eXP {'X(Yo_e])}9 x > 0.

Therefore Q' = {6] : 8] < yo}, implying that the projection of  onto 61

is a proper subset of Q'.
REFERENCES

ASH, R.B. (1972). Real Analysis and Probability. Acad. Press.

BAHADUR, R.R. & E.L. LEHMANN (1955). Two comments on 'sufficiency and
statistical decision functions'. Awn. Math. Stat. 26, 139-142,

BREIMAN, L. (1968). Probability. Addison-Wesley, Reading (Mass.).

EPSTEIN, B. & M. SOBEL (1954). Some theorems relevant to life testing from
an exponential distribution. 4nn. Math. Stat. 25, 373-381.

HALMOS, P.R. & L.J. SAVAGE (1949). Application of the Radon-Nikodym
Theorem to the theory of sufficient statistics. 4nn. Math.
Stat. 20, 225-241.

HEWITT, E. & K. STROMBERG (1965). Real and Abstract Analysis. Springer-
Verlag Berlin.

ROHATGI, V.K. (1976). An Introduction to Probability Theory and Mathe-

matical Statistics. Wiley, New York.



31

CHAPTER 3

Section 2

Problem 1,

(i) We denote max (xl,...,xn) by X(n)* Then the density Py with respect
to Lebesgue measure A of a sample of size n from a uniform distribution on

(0,6) satisfies

pg(x) = 9_n1(0,6)(x(n)), x ¢ R

If ¢ is defined as in the problem, then for any 6] > 60 the inequality
n,-n
pg, (x¥) > 6,0, peo(X)
implies @(x) = 1. Because the set
. n n,-n
{x : x €R ,pe](x) < 606] peo(x)}

is empty it follows from Theorem 1 (ii) that ¢ is MP for testing 6 = 60
against 6 = 61. Because @ has been defined independently of 91, @ is UMP
for testing 6 = 60 against K : 6 > GO. In view of Eew(x) <a, 6 < 60,
the test ¢ is also UMP for testing H : 0 < 60 against K : 0 > 60.

(ii) With ¢ as defined in the problem

1
EeO(D(X) = PeO{X(n) < GOOLTf} VR

1 1
T ’ﬁ ”
For the cases 6] > 90, Boa < 6] < 60 and 61 < Goa Theorem 1 (ii)

with k = ege;n, k = ege;n respectively k = 0 shows that

© is MP for testing 6 = 60 against 0 = 6]. Consequently ¢ is UMP for
testing H : 0 = 60 against K : B # 60.

To prove uniqueness, let w* be any UMP test for the problem. Define D =

{x: ox) # "]}, D, =Dn {x: X(n) eoocﬁ},
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1
= . §ey = .
D,=Dn {x: Goa < X () < 60} and Dy=Dn {x : 60 < X () < K} for some

K > 90. Because ¢ and @* are both UMP Eew(X),= Eewf(x) for all 6 > 0,
which implies

o <o 0@ -*@larx) =0, 6> o.

(n)
Consequently
Jhi-¢*@larxx) = | 1 lox) 0" (x) 1dA(x) = 0 = A(D)) =0,
D X <0 qn
! (n) 0
] 0" ®lx) = [o(x) - 0" (x) 1dA(x) +
D2 x(n)<60
- J 1 [0(x) -¢" () 1dA(x) = 0= A(D,) =0
X, <6 . of
(n) 70
and

J - @1 = [o(x) - 0* (x) JdA(x) +
D X <K
3 (n)

- J [oG) ~0*(x)1arG) = 0= A(Dy) = 0.
x(n)<6O
Hence, for all K > 60, we have A(D n {x : x(n) < K}) = 0 which implies

A(D)Y = 0.
(NEYMAN and PEARSON (1933)).,

Problem 2

(i) The variables Yi = e—axi, i=1,2,...,n, constitute a sample from
the uniform distribution on (O,e_ab). The testing problem reduces to the

problem of testing i 0= e-abo against K* : 8 # e_abo on the basis of

Y = (Y]""’Yn)' By Problem 3.1 (ii) the UMP level o test for the

original problem is given by w(x) = 1 if min (x ,xn) < bo or

TERE
min (x],...,xn) > bO-(an)_lloga and @©(x) = 0 otherwise.

(ii) TFirst consider the problem of testing H : a = aO,b = b0 against

K' : a= a],b = bl’ where a, > a, and b] > bo. By Neyman-Pearson's
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fundamental lemma it follows that the test ¢, given by @(x) = 1 if

or Z?= X, < (2a ~+nb0 and @(x) = 0 other-

)—l 2

0 1 o’ Xon;a

wise, is MP at level of significance o. Here X%n'a is the lower o-quantile
2

min (xl,...,xn) <b

of the chi-square distribution with 2n degrees of freedom.
Since the test does not depend on the particular alternative (al’bl)

b < b,.

chosen it is UMP against alternatives a > agys 0

The (very unusual) existence in this case of a UMP test on a two—
parameter problem can be explained in the following way:

Since P(ao,bo){min (X],...,Xn) < bo} = 0 we obviously reject H if
min (Xl""’xn) < bpy. On the set {(x],...,xn) : min (x],...,xn) > bo}
the densities are strictly positive both under H and K and the role of
the second parameter b is played out. What remains is a one-sided
testing problem for expomential distributions.

In that sense the problem can be generalized:

Let X]""’Xn be a saﬁple from a distribution with probability density

(with respect to some measure J)
pe,p® = cO»I T Eneo o,

where Q is strictly monotone. Then there exists a UMP test ¢ for testing
H: 8= Bo,b = b0 against X : 6 > Go,b < bo. If Q is increasing (de-

creasing)

1 if min (Xl""’xn) < bo

1 >(<) )
(p(xlr L sxn) =

.o Dl _ .
Yy if Zi=1 T(Xi) = C} and mln(xl,...,xn) > b

0
0 <(>)

where C and Yy satisfy E(eo’bo)w(x],...,xn) = 0. A similar assertion can
be made about families with monotone likelihood ratio and truncation.
Note that for testing H against K i 8 < Go,b < b0 the same argument
holds, but that it does not work for testing H against K' : 98 > Go,b > bo.
(NEYMAN and PEARSON (1936))

Problem 3.

If =0 or o =1 a nonrandomized most powerful level o test trivially

exist. Therefore let 0 < o < 1 and let ¢ be a most powerful test for
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testing PO against P] at level «. Then, by Theorem 1 (iii), ¢ satisfies

1 when p](x) > kpo(x)
o(x) = { (Lebesgue a.e.)
0 when p](x) < kpo(x)
where k is some constant and Py and p, are densities (with respect to
Lebesgue-measure) of PO and P1 respectively,
Define the measurable set A by A = {x : p](x) = kpo(x)}.
An application of the lemma with f(x) = po(x), a= PO(A) and b =
IA w(x)po(x)dx yields the existence of a subset B of A that satisfies
PO(B) = jB po(x)dx = IA w(x)po(x)dx. Therefore the nonrandomized test
defined by
1 when p,(x) > kp.(X) or x ¢ B
~ 1 0
o(x) = :
0 when p](x) < kpo(x) or x € A-B
has the same level and power as ¢ and consequently it is a most power-

ful level o test.
Problem 4.

Let PO and PI with densities Py and P, belong to P and note that for

nonnegative k
Gosp) 2kpp(0) = {x : g () 2 K/ (1)),

O-FPI. Let

wc(-) be the critical function of the most powerful test based on T with

where g = p]/(po-fpl) is a density of P, with respect to P

level of significance Po{g](x) 2c}, 0 <c < 1. Since T is fully in--
formative, the tests based only on T form an essentially complete class

and Theorem 1 (iii) implies that there exists a k « [0,1] such that
(0 {x: g, >k} e{x: © (TG = 1} e {x : g (x) 2 k}

holds up to sets of (Poi-Pl)—measure zero., If ¢ is such that
Pl{g](X) 2 ¢} < 1, then Theorem ! (iii) also yields Eqo (T) = Po{g](X) > ¢}

and hence we have

v

Pole, (x) >k} < Eq® (T) = Po{g(X) = c} < Polg (X) 2k}

and

v

Piley(®) >k} < B0 (1) =P {g ) > c}.
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Consequently {x : gl(x) >k} e {x : g](x) >clec {x: gl(x) > k} holds
up to sets of (PO-*PP—measure zero. (Note that Po{c < gl(X) <k} =0
implies P]{c < gl(X) < k} = 0). This implies that k in (1) can be chosen

equal to ¢ and hence that
(2) {x : g, (x) > cl c {x: @ (T(x)) = 1} c {x: g, (x) 2 c}

holds up to sets of (Po-fPl)—measure zZero.

If ¢ is such that Pl{g](X) > ¢} = 1 then
(3) Pole (X)) >k} < Polo (T) = 1} < Eq0 () < Polg (%) = c},
(4) P {g,(X) >k} < P o (1) =1} = E o (T) = Pl{gl(X) > e} =1

and k may be chosen >c. So the second inclusion in (2) holds again because

of (1). In view of (4) we also have
I-¢c _
Polo (T(X)) < 1 and 8, (%) > ¢} < — P lo () < 1)=
= 1=cry - "
= —1 P]{wc(T) 111 =0
and we conclude that (2) holds in general. But this implies that

{x 1 g,x) 2}l = n x:0 4
00T By

up to a set of (P0~+P1)—measure zero. Consequently the sets

(T(x)) = 1}

{x : gl(x) >el, 0<e < 1, are contained, up to (Poi-Pl)—nullsets, in
the o-field induced by T and obviously the same holds with 8 replaced by
8y = Po/ (P +Py)-

Since (gO(X),g](X)) is clearly sufficient for (PO’PI) (cf. Problem 8 of
Chapter 2), this implies that the statistic T is sufficient for (PO’PI)'
Problem 9 of Chapter 2 completes the argument.

Section 3
Problem 5.

(i) The number of successes X has a binomial distribution with density
(with respect to counting measure) pp(x) = (2)px(1 _p)n-x'

For p < p'
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p.1(x) ] (El)x(]_Pv)n—x
P, (%) P/ \1-p

is a nondecreasing function of x.
So we have to find C and v, 0 < Y < 1, such that ¢, defined by @©(x) = 1 if
x> C, o(x) = v if x = C and ©(x) = 0 if x < C, satisfies

C -C n n) x n-x
E w(X)=Y<“>p(1-p)“ » 2 ()p (1 -p )" = a.
Po c/"0 0 x=C+] \¥/°0 0

With the help of a programmable calculator one may find

= 05:C=3,v = .09
a = .10 : C=3,y = .473
= ,20:C=2,v = .440

The power of the test against P, is given by

- n -
B(p,) =Y<2)P?(1 -pp" Co s (:)f;(l -pp

x=C+1
This gives the following table:
o .05 .10 .20
Py

.088 . 158 .398

. ' .205 .310 .593

.5 .373 492 .759

.6 .570 .675 .882

.7 .762 .835 .956

(ii) (b) In order to estimate the answer of (a) we use the normal
approximation first (X is approximately distributed as N(np,np(1-p))).

If U has a N(0,1)-distribution then

C—npo }

Py, {X > ¢} + yP, {X = C}nP{U >
Fo Po { VnPo(l“Po)

Epow(x)
=0 = ,05

Hence (C-npo)/VnpO(l—po) ~ 1.65 ("~" means "is approximately equal to").
In the same way we find Eplw(x) =8 = .90 =='(C--np»l)/»/npl(l--p1 ~ -1.28.
With Py = .2 and P, = .4 this gives n =~ 42.8,



So the minimum sample size required in order to have B(.4) > .90 is

approximately n = 43,

(a) Using binomial tables we get
43: C =13, y = .3713 and B(.4)
44: C 13, vy = .1508 and R(.4)

So the required sample size is n = 44,

.896 < .90;
.905 > .90.

for n

1]
It
]

for n

37

(iii) Solving (C-npo)/VnpO(l-po) ~ 1.65 and (C--npl)/x/np](l-‘p1 ~ -1.28

for Py = .0l and P, = .02 we get n =~ 1179.05. Hence n = 1180.
Problem 6.

(1) We assume that the mixed second derivative

)2
565% 108 Pg(®)

exists. This derivative is nonnegative for all 6 and x, iff

g% log [pe-(x)/pe(x)] is nonnegative for all 8' > 6 and all x; or, iff
log [pey(x)/pe(x)] is nondecreasing in x for all 8' > 8. Since the

logarithm is increasing this is equivalent to the monotone likelihood

ratio property.

Here we assumed also that for any 8' > 0 the densities Py and Py are

distinct, which may be phrased as follows. There exist 0" and x' such

that 8 < 8" < 8' and

2
0 = an = !
aeoax log peo(x) >0 for 60 8" and x = x'.

(ii) The result follows by observing

82 log Pe(X) 3 1 aPe(X)\ 1 azpe(x)
360x% = ’é?(pe(x)' x ) Py (%)

a6 9%

Pe(X)2

Problem 7.

Consider the UMP tests ¢h based on T and define 4= inf {0 : ¢h(x) = 1}.

By Theorem 2 a UMP test is given by



38

1 >

1
n
-

wa(x) = 1Y, when T(x)
0

where cy and Yo satisfy
Eeowu(x) = Peo{T >e )+ YaPeo{T = Ca} = a.

Now we note .that

“h(x) < 1= T(x) < e = PeO{T > T(x)} = PeO{T 2 ca} >
On the other hand, if Yo = 1 then
(pa(x) = 1= T(x) 2 ey @ PGO{T > T(x)} < PeO{T > ca} =q
and if Ya < 1 then
0, x) = 1= T(x) >c = Peo{T 2 T(x)} < Peo{T >e b < a.
Summarizing we see that
> T(x)} € a.

(5) PeO{T >T(®} <a=@ @ =1= PeO{T
But this implies, with t = T(x),

Peo{T 2 t} = inf {a : PQO{T > T(x)} < a}

A

(6) inf {a : ¢, (x) = 1}(= @)

A

inf {o : PeO{T > T(x)} < a} = Peo{T > t}.

Problem 8.

(i) By Problem 13, Chapter 2, the joint distribution of Y = (Y-,...,Yr)

is an exponential family with density (with respect to Lebesgue-measure)

_ 1 n! I

pe(y) = (2e)r (n_rAT—exp < 55 ) > 0 < Y £ ... 5y
- r —

where T(y) = Zi=] yi-F(n r)yr,

Because, by Theorem 9, Chapter 2, the power function B(8) = Eew(Y) of any

test ¢ is continuous in 6 (> 0), a UMP test for testing H :020, = 1000

0
against K : 0 < 60 is also UMP for testing H : 0§ > 90 against K and vice
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versa. By reversing inequalities in Corollary 2 we have that the test o,
given by @(y) = 1 if T(y) < C and @(y) = 0 if T(y) > C, is UMP for testing
H against K.

Also by Problem 13, Chapter 2, we see that the statistic T(Y)/0 has a
xz—distribution with 2r degrees of freedom and distribution function F_.
Hence C is determined by C/1000 (cf. Problem 2). For r = 4 we
find C = 2733.0.

The power of this test against 9] = 500 is P

2733.0\ _ _
F4<—§55——> = F,(5.466) = .29.

=2
XZr;.OS

5OO{T(Y) < 2733.0} =

(ii) We have to find values of r such that PSOO{X < C} = .95,

Since C = 1000 - Xgr' 05 Ve have

1000 _2 .

{r) < ct = 500 X2r;.05

{T(Y)/500 < )

500 500

2
b= FL2G, 05

In order that this expression is at least .95 r must satisfy r 2 23.
(EPSTEIN and SOBEL (1953))
Problem 9.

That X has a Poisson distribution with parameter AT and that 2AT has a
xz—distribution with 2r degrees of freedom can be seen for example from
Section I.4 of FELLER (1971).

We consider the UMP tests for testing H : A < AO at level a based on X
respectively T. For each choice of r the test based on T has the power
B(r), say, at the alternative Xl. Hence, since r is a natural number, one
can not obtain every prespecified power B at Xl. Thanks to the fact that
T is real, this phenomenon does not occur for the tests based on X.

Let r be fixed and let us consider now the UMP test basedon T for testing
H at level a, which has power B(r) at A]. This test rejects for realizations
of T less than T, say. If X is the number of events occuring in a time
interval of length T then (cf. again Section I.4 of Feller (1971))

N P, {Ts1}="P

AsT T{X > r}

Xy

and we see that the nonrandomized UMP tests based on X respectively T
have the same power functions and hence are equivalent.
(i) Since ET = (2X)-]E(ZXT) = r/XA, the desired ratio equals AT/r.

(ii) Using the xz—distribution we see that we have to choose here r = 19
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and T ~ 12.44. Consequently the first design has a smaller (expected) time

of observation than the second one iff A < r/T & 1.53.
Problem 10.

(i) If g is a function with p](x)/po(x) = g(T(x)), then by Lemma 2.2

we have for every Borel set B

@ = [ p A > [ s(T)py () dux)
B

T-1(B) - 1(B)

= [ e(t)pg(t)av(e)
B

with equality if g(t) is finite on B. In view of this and
Po{g(T) = w} = Po{g(T(X)) = o} = PO{Po(X) =0} =0
we see that p;(t)/pé(t) = g(t) holds for almost all t.

(ii) This is an immediate consequence of Lemma 2.(i) in the proof of
which it is implicitly assumed that Elw(T) > Eow(T) is implied by

S W(t)[pi(t)-pé(t)]dv(t) 2 0. This implication is valid under the
convention that EIW(T) > EOW(T) holds if EIW(T) and EOW(T) both exist
and satisfy the inequality or if Elw(T) does not exist and EOW(T) =~
or if Elw(T) = © apd EOW(T) does not exist or if Elw(T) and Eow(T) do not

exist.

(iii) The first part follows from (i) and the version of the second part
we will show is the following one: EOW(T) < EIW(T) unless P(T(x)) is
constant where Pg # p; a.e. (PO-FP]) or Eow(T) and EIW(T) are both

®, ~® or undefined. Here we agree to say that Eow(T) < EIW(T) also holds
if EOW(T) does not exist but E]w(T) = o or if EOW(T) = - but

EIW(T) does not exist. With this convention we

must only show that Eow(T) < E]w(T) when both Eow(T) and E1W(T) are finite
and Y(T(x)) is not constant where Py # P, a.e. (PO-FPI). However in this
case, the proof of Lemma 2 (i) can be carried out with the first or second
inequality in the displayed chain of inequalities being strict; for either
Y(T(x)) 1is not constant on A a.e. (P0-+P]) and u(A) > 0, or on B a.e.
(P04-P]) and U(B) > 0, or a < b and U(B) > 0. Note that the extra con-
dition "where P # pl" is necessary, for otherwise it is possible that

a t exists such that 0 < pé(t) = p;(t) <1, v(=,t)) > 0, v({t}) > o0,
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v({t,®)) = 0, and such that y = 0 on (-~,t) and ¥ = b > 0 on [t,o).

(iv) By the concavity of the log-function we have
p;(X)

p,;(X)
- < Eolog \—E’E—(ﬁ) < log @OW <0

and similarly

p, (0 Py (0
Lo > E] log (————PO(X)> = -E, log <———-—-—P1(X)> > 0.

With T(x) = p](x)/po(x) and P(t) = log t the strict inequality now follows
from (iii) once we have verified that log (pl(x)/po(x)) is not constant
where P, # P;» a.e. (P0+Pl)'

It this were not the case, then we should have either P, > g a.e. (PO-PPI)
or p, < py a-.e. (PO-FPI); but this is impossible if PO # Pl' We note that
it is just as easy to check the conditions for strict inequality in the

concavity argument.
Problem 11.

By Lemma 1 there exist two nondecreasing functions f_ and fl’ and a

0
random variable V, such that fo(v) < fl(v), for all real v, and the

cumulative distribution functions of fO(V) and fl(V) are F0 and Fl’

respectively. Hence for any nondecreasing fumction ¥

EOW(X)'= Ew[fO(V)] < EW[fl(V)] = EIW(X)

if the expectations exist.
Section 4
Problem 12.
The experiment (f,g) is more informative than (f',g'), that is
(8) sup {Eg,w(x') : Ef,w(x') < a}l < sup {ng(x) : Ego(X) < al,

for all a ¢ [0,1].

Consider any o' ¢ [0,1]. By Theorem 1 there exists a test @' such that

sup {E;,0(x") : Eg.w(X') <a'l = E,0 (X"
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and Eg,w'(X') =o', Using (8) with a = Ef,[l-w'(X')] and, again,

Theorem | we conclude that there exists a test ¢ﬁ such that
* 1 ' * 1 1
Ego (%) < a=Eg[1-90 (X)] and EQ°(X) = B, [1-0"(XD].
This implies
* 1 ' * 1t '
El1-0 ()] 2 E.,0' (X) and Eg[l—cp x)] = Ey 1 X)) = a

and hence

sup {E.,0(x") : Eg,w(x') sa'} = E,0' (&) s Bl —0* @] <
< sup {Efw(X) : ng(x) < a'l.

Since o' was arbitrarily chosen, it follows that (g,f) is more informative

than (g',f').
(BLACKWELL (1951, 1953))
Problem 13.

(1) Let X and X' be two random variables taking on the values 1 and
0 and let under H; : P{X =1} = Py P{x' = 1} = py» and under H
P{x =1} = p,, P{x' =1} = Py (0 < pgspysphspy < D

Without loss of generality we assume: Py < pb, pé < pi and P < Py-

I

Let @, be the critical function and B(0) the power of the most power-

ful level o test for testing H, against H. based on X.

0 1

~1 -1
Then for o < Py wa(l) = 0py » waf?) =0, B(@) = apy Py and for P, <o
0, (1) =1, 9 (0) = (a-py) (1-py) *, B(a) = p1+(a—p0)(l~p0)“(l—p1)-
An analogous expression for the power B'(0) of the most powerful level

o test for testing HO against H, based on X' may be derived.

1
We have the following situation:
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Bla)
Blo)
P, ?
P g
o
0.0 : 1
0.0 Po Po » 1.0

Hence X is more informative than X'

iff RB'(a) < B(a) for all o, 0O <a <1

: ' - ' - -l¢y -
iff p) < Blpg) = py * (py—py) (1-py) (: 120
. o _ i R -

iff 1-pp 2 (A-ppl1-(py-py) (1-py7"]

iff

1¢))] (1-py(l-pp Z(I‘pp(l-pp-

(ii) We shall prove that a sample X],...,Xn from X is more informative
than a sample X',...,X; from X' iff (9) holds. Sufficiency: let U0 and

U] be uniformly distributed over (0,1) and let UO, U1 and X be independent
under both HO and H . For any YooYy € [0,1], define Y(YO,YI) =1if X =1
and U1 < Y and if X = 0 and U0 < Yo and Y(YO’YI) = 0 otherwise. Then
Pro{¥(rgsvy) = 13 = vipg+ v (1 - p) and Py {¥(yy.v) = 1} = v p, +v,(1-p))
So Y(YO,Y]) has the same distribution as X' under both Ho and Hl’ for

some Y, and Y iff the system of equations

Y. Pyt Ya(l-p4) = D}
(10) 1P0™ Yo 0 0

- \
Yipy* Yol =P = b

has a solution YooYy € [0,1]. Since the solution without the restriction
YooYy € [0,1] is
- PoP; = PP PGP~ PgP] * P~ P
= <

¥, = - < — =y
0 P P P~ Py !
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and since, in view of (10), Yy S 1 implies Yo 2 0, Y(§O’?l) has the same
distribution as X' under both Ho and H, iff pbp]-—pop;-kp;-pé <P P
iff pi(l-po)—p(')(l—p]) < (l—po)—(l-—pl) iff (9) holds. Now the suf-

ficiency follows from the theory of Section 4, p. 76.

Necessity: for vy € [0,1], consider the most powerful level a(y) =

l-‘Y(l--po)n test for testing H  against H1 based on X .,Xn. Its criti-

.
cal function is the one that regects with probability :"Y when T Xi =0
and with probability | otherwise. Hence its power equals Bla(y)] =

1-(1 —p])n+ (1-v( -p])n = 1-v(1 —p])n. The most powerful test based
on X;,.
z X, = 0 and with probability ! otherwise, has the same level iff

..,X', which rejects with probability 1-8, 0 < § < 1, when
n

1- 5(1-'p6)n = 1-—Y(1-—p0)n, which is only possible for

0<vys (1-p6)“(1-p0)-n< 1. ’

If the sample Xl”"’xn is more informative than X',...,X; then

1-68(1 —p;)n < 1=-vQ1 —p])n with §(1 —p('))n v(1 —po)n and Y > O
sufficiently small. This implies Y(l-—pl)n < Y(]-—po)n(1~—p('))_n(l--pi)n

it

for sufficiently small, positive Y, which is equivalent to (9).
(BLACKWELL (1951, 1953))
Problem 14.

Let X and X' be 0-1 random variables and let their probabilities of being
equal to 1 be given by the third and fourth row respectively of the second
table in Example 4. Let p < 7 and let U be uniformly distributed on (0,1)

and independent of X. We define

{o ifX=0and U< (1-m/(1-p)
Y =

1 elsewhere.

Now we have PH{Y =0} =1-7 and PK{Y =0} =1-(r-p)/(1-p). Conse-
quently Y and X' have the same distribution, which shows that X is suf-
ficient for X' and hence is the more informative of the two.

In prdving that B and B are not comparable we may assume without loss of
generality that p < min (W,1=-7) < } and p < p7 as can be seen by
studying the first table of Example 4 and interchanging B and B if
necessary.

Now let V = (Vl""’vn) and V' = (V;,...,V;) be samples from B and B,
respectively. Put Y; = 1 if V, ¢ A, ¥, = 0 i£ V, « A and Y; = 1if Vi € &,
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Y; =0 if Vi e A(i=1,...,n). Then under H qodgf P{Yi =1} = p,
qé def P{Yi =1} = 1-p and under K q def P{Yi =1} = (p-p)/(1 -1,
def Y
T U= = = - 1 1 '
aj P{Yi 1} = 1- p/m. Hence 9 < 9> 9y < 9; and qp < qj.

Suppose V is more informative than V'. Then, by Problem 13 (i),

(l—ql)(l—q(')) < (l—qo)(l—q;), that is

(,_ r;;g.)p < (1-p 2 iff (p-pm(1-7T-p) 2 0

iff p 2 pm, a contradiction.
Furthermore, suppose V' is more informative than V. Then, by Problem
- ' ' .
13 (ii), 999; < 9g4;> that is
(1~p)-;:LgS p( —%) iff (m-p)(p-mp) 2 0 iff p 2 pm,
again a contradictionm.

Hence samples from B and B are not comparable.
(BLACKWELL (1951, 1953))
Problem 15.

Consider the problem of testing H : A = XO against K : A = Xl. Let v, and

v, be two different values of v, Without loss of generality we assume
0 < AO < Al (Problem 12) and 0 < v, < Ve
Let X and X' be random variables taking on the values 0 and 1 with
P{X = 1} = 1-¢20"1 of 1-e Y1 ang P{x' =1} = 1-e20%2 op - Mv2,
Then the conditions §f Problem 13 (i) are satisfied. Hence X is more
informative than X' iff

e—A]V]e-XOVZ < e“xOV]e‘k]VZ iff Ao(vl-vz) < A](vl-vz)
an

iff AO > Al.

It follows that X is not more informative than X'. By Problem 13 (ii)
we have: X' is more informative than X iff (1-e-A1v1)(l-e—A0V2) <
(1- efxovl)(l-e—xlvz). Define f(v],vz) = (1- e_xlvl)(l - e_kovz) +
- (1-e 201y (1 - e MY2) | Then
3 _ _ ">\ v ->\0V2 _ ~ —}\Ovl —>\1V2
5;; f(vl,vz) = Ao(l e "1"De Al(l e e

and 2

M v _=Anv -Aqvy] ~A1V
e = V1 0v2 - 0oVl 1V2
3v13v2 f(v],vz) Xol]e e Xolle e >0,

by (11).
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So (B/BVZ)f(v],vz) is strictly increasing in the first coordinate v,
(< vz). Furthermore (3/3v2)f(0,v2) = 0. Hence (8/Bv2)f(v],v2) > 0 if
0 < vy S v, This means that f(v],vz) is stricly increasing in vy for

0 < v, < v,. Because f(v],vl) = 0 it follows that f(v],vz) > 0 for

0 < v, < Vye

Hence X' is not more informative than X.
Concluding we see that X and X' are not comparable.
(BLACKWELL (1951, 1953))

Section 5

Problem 16.

First we note that for q = 1-p and t > [t] we have [n-t+1] = n-[t] and

hence

PP{T <t} = (t —[t])Pp{X [t]} + PP{X < [t]-1}

(t-[t])Pq{X n-[t]l} + Pq{x z2n-[t]+1}

1 - {(1+[¢t] —t)Pq{X =n-[t]} + Pq{X <n-[tl-1}}

1 - P {T < n-t+t},
q
By continuity considerations we see that for all t
P{T <tl=1-P{T < n-t+l}.
P q
In view of the above p is easily obtained from p by
p(t) = 1-p(n-t+1).

Further we have 5*(t) = p(t) for t > .05 and 5*(t) =0 for t < .05. We
therefore only present graphs of § and p.
Note that for t € N the left- and righthand derivatives of P are

different!
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Problem 17.
The hint is a complete solution. Note that

EgL(8,8) = Po{8" < 0}« [ L(B,uw)dF(w).

Section 6
Problem 18.

Absorbing, without loss of generality, the factor h(x) into i, define

47
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Q=1{6:0<J exp [Q(O)T(x)1du(x) < ©}. By Theorem 9, Chapter 2, the
integral [ ¥(x) exp [nT(x)]du(x) is differentiable with respect to n in

the interior of Q(R) = {Q(B) : 6 ¢ N}, for any bounded measurable function
Y. Its derivative is [ Y(x)T(x) exp [NT(x) ldu(x).

Since Q is differentiable in int Q (= interior of Q) and since Q is strictly
monotone, Q (int Q) c int Q(Q) and [ Y(x) exp [Q(O)T(x)ldu(x) is dif-
ferentiable in int Q with derivative Q'(G) fw(x)T(x)exp [QO)T(x) Jdu(x).
Hence, taking Y(x) = 1, C(9) [exp [Q(O)T(x)ldu(x) = 1 implies

c'(8) fexp [Q(OIT(x)Jdu(x) +C(8)Q"(8) f T(x) exp [Q(O)T(x)1du(x) = O,
that is
(12) %;é;%— = —Q'(O)EeT(X), for all 6 ¢ int Q.

Also, taking Y(x) = @(x), the power function B(8) =
C(8) f(x) exp [Q(O)T(x)Idu(x) is differentiable in int § with derivative

B'(8) = ¢'(8) [ w(x) exp [Q(OIT(x) Jdu(x) +
+ C(0)Q"(8) [ o(x)T(x) exp [Q(O)T(x) Idu(x)
06y Be®® + Q' (MELTX).
Combining this with (12) we see that
BT (8) =.Q'(6){EB(D(X)T(X) —Eew(x)-EeT(X)}, B ¢ int Q.
Define wo(t) =1,Y, 0 as t >, =, < C then, for § ¢ int Q,

Eew(X)T(X)-Eew(x)-EeT(x)

| ey (t)[t-E,TIdPE(t) > 0, when C 2 E T
(E,T, ) 0 el ]
g Loy (e) - 1][t—EeT]dP'£(t) >0, when C < EgT.

(‘w,EeT)

Remark: it is implicitely assumed that T(x) is not a constant (a.e. 1).

It follows that B'(8) > O for all © ¢ int § for which Q'(e) > 0.



49

Problem 19.

(i)  Preliminary remark: since the formulation of the problem is ambiguous
we assume, in view of the hint, that one wishes to find a selection pro-
cedure such that the expected proportion of the candidates being selected
is 0. Let ¢p(x) be the probability of being selected for a member with
measurements X = (Xl""’xn)' Then "the expectation of Y for the selected
group' equals EY-@(X) =J'w(x)E(Y| x)dPX(x). So we must maximize

Il P()E(Y | x)dPX(x) subject tOJ-W(x)dPX(x) = . For this we apply

theorem 5 (ii) withm =1, fl(x) =1, fz(x) = E(Y] X), ¢, =a and

o) =1, v, 0 as E(Y| x) >, =, < C, where Y and C satisfy

P{E(Y | X) > C} = yP{E(Y|X) = C} = 0. Now the desired result follows.

(ii) This follows in the same way when we take fz(x) = P{Y > yol x}.
(BIRNBAUM and CHAPMAN (1950))
Problem 20.

(i) Suppose there existed €|s€ys+.. such that Po =23cnpn (a.e. with
respect to Lebesgue measure). Now up to a set of Lebesgue measure zero,

Py =1on [0,1], zero elsewhere; and P, = E%T
1 1 = v -1

So on (1+n+1 ,]-Fn] we have (a.e.) 0 = Zi=l Cs TiT

Successive substitution shows that c, = 0 for all i, a contradiction.

on [O,I-F%], zero elsewhere.

n=1,2,...

(ii) Suppose ¢ is a test such thatf(p(x)pn(x)dx = 0o for all n = 1. Then

we must have

=1L

1+
o = E%T g @(x)dx, for all n 2 1.

Now dominated convergence implies

1+l

0 = lim —— n o(x)dx = } W(x)dx =I(p(x)p0(x)dx,
0 0
as was to be shown.
Problem 21.
Let u satisfy the side conditions Fi(u) < s (i=1,2,...,m). Then from

ki[Fi(uo) —Fi(u)] 20 (i=1,2,...,m)
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and

m m
Fuep () = F kgF (@) < Py Gug) = 2 kgE (ug)

it follows that
m
Fmﬂ(uo) - Fm+](u) > i§1 ki[Fi(uo—Fi(u)] > 0,

Hence, if U, satisfies the side conditionms, u, maximizes Fm+ subject to

1
Fi(u) < s (i=1,2,...,m).

Section 7
Problem 22.

Using the method of p. 90 one obtains Cy =5, vy = .3969, Cy) = 8 and
Y, = .6459. The power of the test against the alternative p = .4 equals
.5338.

Problem 23.

We have to prove that the exponential family with densities

- ¢(0)ed(OT(

pe(X) g(x),

with T(x) = x and Q(8) = 6 is strictly of P6lya type. It is necessary to
assume that the function g(x) is strictly positive, since An = 0 if there
exists an X, such that g(xi) = 0. This is however no restriction, because
it can always be achieved by choosing an appropriate measure u. The
problem now reduces to the proof that for all X < .ee < %, and

61 < .. < Gn

d1x1 veer. 1m0

A =1]: : > 0.
eenxl eees eenxn

For n = 1, we have AT = eelxl > 0. Now suppose that the assertion holds
*  * * .. . *
for AI’AZ""’An-]' Divide the i-th columm of An by exp (Glxi),

i=1,...,n, to obtain
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1 1 e 1

exp {(8,-6,)x,} exp {(8,-06)x,} ... exp {(ez-el)xn}
exp {(0,-0)x}  exp {(8,-0)x,} ... exp {(8_-0)x}

Subtracting in the resulting determinant columm (j-1) from column j,

j =n,n-1,...,2, we get

1 0 eer 0
o028 ((Op=8pxy _ (O3-8p)xy (62-0)xy | (8-8y)xp

OnOx;  (Op=0pxp  (Bp-0p)xp  (BpOxy _ (Bp-0p)xp

. . * .
Hence, by elementary properties of determinants, An has the same sign. as

eh2¥2 _ ¥ X3 Maxy 0 TaXp | TaXpg

1) . .
s -

Nt : : :

¥2 . ¥t JhX3_ X2 JMn¥n_ Jln¥np-1

with ”i = ei-el. Now

e2¥2  J2¥3_ Maxy  Maxp _ Maxpo
(m_q.
An—l I ) . .
n*2 Nn¥3 . NnX2 Nn¥n _ "n¥n-1
e e e e e e

enzx] en2x3 - en2x2 e enzx‘n - enzxn_l

¥l JTn¥3. X2 | Jn¥n_ Jh¥n-l

Expanding the two determinants by the first columm, and using the notation

n
= N X
h(x) kzz a e ¥,

. X
where 2y denotes the cofactor corresponding to "k , we get

0D = hxy) ~hx)) = (xy-x B (5,),
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where ¥y € (XI’XZ); the second equality follows from the mean value
theorem of Lagrange, since h(x) is differentiable. Notice that

n
- NEX
h'(x) = T ane
=2 KK

implying that

nzenzyz eM2¥3_ JxX2 0 Ma¥p | MaXp-g
83} = Gymx)

nen¥2 JM*¥_-m¥2 . To¥n . Jin¥n-1
n

- _ (2)
= (-xpA
Now we expand A(z) by the second column and then proceed in the same manner
n-1 27
as for Aéiz to obtain

nzenzn nze“zys el2%4 _ 2%y JNoxp | Noxpe
2) . . . .
A( = (x,-%,) . . . .

n-1 3 2 .

Nay2 Y3 ¥4 _ Jn%3 "n¥n . Jn¥n-1
nnn nne e e ces € e

where vy € (xz,x3). Then we proceed in an analogous way with the third

column and we continue this procedure up to the n-th column. So we
finally get ‘

n,e2Y2 o oM2¥3 - o o N2Vn
(1y _ = 2 2" 2,
Ap-1 = k]=IZ G = %) : : : ’

Nny?2 Mn¥y3 "n¥n
nne nne nne

where Yg € ¥3 < .u. < Y, ©OF, since n; = 6,-9

e"2Y2 ee. e129n

2D R - T oo -6 : :
n-1 - k=2 Xk xk—l) k=2 k 1 : . :

ennyz ces ennyn

Since the obtained determinant is (n-1) X (n-1), the induction hypothesis

implies that Aélz, and therefore A: is strictly positive.
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Remark. The yﬁs obtained by application of the mean value theorem are
inner points of the interval [xk_l,xk], and not y, € [Xk—l’xk] as is
stated in the hint. This is essential, because otherwise it would be

possible that Yy =% for some k, which would imply that

R4
Ieniyj] i,j =2,3,...,n

has two identical columms, that is Ieniyj| = 0.

(KARLIN (1955, 1957))

Problem 24.

First we prove that b) implies a). The determinant A3 is positive for all
61 < 62 < 63, X, < x, < Xq. So we have for kl’kz’k3 > 0 that

g(x,) g(x,) g(x3)

Pez(X]) Pez(xz) PeZ(XB) = kA, >0,

(= ( x

where g(x) = klpel(x)-kzpez(x)-+k3p63(x). The equation g(x) = 0 has
therefore at most two solutions. If g(x]) = g(x3) = 0, we have

0 < kb, = "g(xz){Pez(x])Pe3(X3)"Pez(x3)Pe3(X])}-
Monotonicity of the likelihood ratios implies that g(xz) < 0. If
g(x,)) = g(x3) = 0, we have

0 < k]A3 = g(x]){pez(xz)pe3(x3)-p92(x3)p63(x2)}.

Again by the monotonicity of the likelihood ratios it follows that g(xl) > 0.
Finally if g(x]) = g(xz) = 0, the same argument yields that g(xs) > 0,

To prove that a) implies b), let 91 < 92 < 03 and X <%y < X3, and
write the following set of equations in Xz and KB:

P, (%) = A,pg, (x,) + Apg (%)
(13) { | 2P0, %% 3764 %1

pel(x3) = szez(x3) + A3p93(x3)

Monotonicity of the likelihood ratios implies that the determinant D
defined by



54

I LRI SRCN

is positive. Therefore the set of equations (13) has a solution,

Xz = k2, X3 = —k3 say, and
k, = {pe](XI)PGB(XB) - pe](x3)pe3(x])}/D
- k3 = _{Pe](xl)Pez(X3) - Pel(x3)p62(x])}/D.

The monotonicity of the likelihood ratios implies that k2 and k3 are

positive, Define
g(x) = pe](x) - kzpez(X) + k3pe3(x),

then we have that g(xl) = g(x3) = 0, Furthermore 1 = k], k2 and k3 are

positive. Hence we can apply a) to obtain that g(xz) < 0. Since

Pe](x]) Pe](xz) pe](x3) g(x)) g(x,) g(x5)
by = P, (x)) g, (%)) pez(x3) = pez(xl) Pg, (%) Pe](x3)
P93(X1) PeB(Xz) PeB(XB) Pe3(x]) PeS(xz) PeS(X3)
0 g(xz) 0

= [Po,xp) o, Gy pg, (xp)| = -(xy) D,

P, (x;) Pg, (%) Pg, (x3)
it follows that A3 > 0.

(KARLIN (1955, 1957))

Problem 25,

We prove the results of Theorem 6, Section 3.7 for the family of densities

{pe(x)} satisfying (a) and (b) of the problem.
Remark: In formula (24) of Theorem 6 we must replace "C1 < C2" by "Cl < CZ".

First note (cf. (46)) that A3 > 0 implies that there do not exist
X < xy < X3 and 91 with pe](xl) = pe](xz) = pe](x3) = 0. Consequently
the inequality (c) pe(x) > 0 is violated for at most two points in R.
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(i) Let 61 <8' < 62. As in the proof of Theorem 6, we use Theorem 5 (iv)

to prove the existence of constants kl and k2 and a test 9 with

and

1 <

wo(x) = { when k]pel(x) + kzpez(x) g PG'(X)

or, in view of (c),

0

1 <
wo(x) =-{O when kl(pel(x)/pev(x)) + kz(Pez<X)/Pe'(x» § 1

k1 and k2 can not be both < 0, for then:
Eelw(X) = E92w(X) = 1.

If one of the k's is non-positive and the other is positive, then, as in
the book, 9 has a strictly monotone power function, which is also im~

possible in view of (25), p. 89, so k, > 0 and k, > 0. Let

1
g(x) = klpel(x) = Pet(x) + kzpez(x)-

Then we have

wo(x) = {] when g(x) ‘ 0.
Ao >
By the continuity of pe(x) in x (assumption (a)) and the fact that wo does
not pg-a.e. reject, there exists at least one point C with g(C) = 0. It
follows from Problem 24 that there exist at most two points C] and C2 with
g(C]) = g(Cz) = 0, and that @, is of the form (24) if C1 # C,. If

C, = C, = 0, then g(x) must be of equal sign for x < C and x > C.

1 2 )
Otherwise @ would be a one-sided test, which has a strictly monotone
power function. This is however impossible by (25). Observing the

= C, we see that for x, < C < x

determinant k]A3 in Problem 24 with X, 1 3

0 < kydy = gx)){pgr (©pg, (xy) = Py1(xy)pg, (O)) +
+ g(x3){pe.(x1)p92(c) - Pe'(C)Pez(x1)}'

We know already that g(xl) and g(x3) have the same sign, and combining
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this with assumption (b) we see that g(x) > 0 for x # C. This means that
also in this case @ is of the form (24) with C1 = C2 = C. By Theorem 5
(iii), @, maximizes Eew(X) subject to

Eelw(x) <o and Eezw(x) <0

for 8, £ 6 < 6,. From (ii) it follows by comparison with the test

1 -T2
©(x) = a that Ee¢b(X)5:u for 6 < 61, 8 > 92, so ¥, is UMP.

(ii) 1. Suppose that the equation

(14) klpe](x) + kzpez(X) = pgr (%)

has two solutions C] and CZ' Then we know from part (i) that
1 when Cl < x < C2

(15) 9 = {

0 when x < C1 or x > C2.

Let 8" < 61 < 62. The set of equations
* * _ .
k]pe"(ci) + kzpez(ci) = pe](ci)’ i=1,2,
has exactly one solution

Pez(Cz)Pe](C]) - Pel(Cz)Pez(Cl)
1 .Pez(Cz)Pe"(Cl) - Pe"(Cz)Pez(Cl)

Pen(Cz)Pe](Cl) - Pei(Cz)Pe"(Cl)
2 pgn(Cy)pg, (Cy) - pg, (Cylpgn(C))

*

with k]
(15) and Problem 24 that

and k; both positive by assumption (b). Then it follows from

1 <
@y(x) = {0 when kTPG"(x) + k;pez(x) g pel(x),

*

or, since k1

> 0,

1 >
mo(x) = {0 when pe](x)/kf - kZpez(x)/kT . peu(x).

By Theorem 5 (ii) we see that 9, minimizes Eenw(X) subject to (25).
Similarly we can prove that ¢b minimizes Eew(X) subject to (25) for
8> 62. By comparison with the test @(x) = o we see that Eemo(x) < o for

0<06,,0=20

1? 2°
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2, Now suppose that the equation (14) has only one solution x = C.
From (25) it follows that pe](c) = pez(C).

Let again 8" < 6] < 62. We have to prove the existence of constants EI’E

2
such that
(16) pen(x) > E]pel(x) + Ezpez(x) when x # C
(17 pen(x) = ﬁlpe](x) + Ezpez(x) when x = c.

Since pel(C) = pez(C), it follows from (17) that

kZ = {pen(C)/Pez(C)} - kl'
Substituting this into (16) gives

pgn(x) > El{pel(x) - pez(x)}-+ {pe"(C)/pez(C)}-pez(X), x # C.
Rewriting this inequality gives

- © pgn(®pg,(©) - pgu(CIpg, (x)
1 pe](x)pez(c) - Pel(C)Pez(x)
>

when x C.

>

Note that the right hand side of this inequality is positive for all x # C.
Let X < g < Xq5 then we must find ﬁ] such that 0 < f(x3) < El < f(xl)

for all %, <C< Xgs where

Pe"(X)Pez(C) - Pe"(C)Pez(X)

Pe](X)pez(C) - pel(c)pez(x)

f(x) =

< C < x,.

To this end we start with proving that f(x3) < f(xl) for all X, 3

By assumption (b)
pen(xl) pen(C) peu(x3)
0<A4y= p91(x1) pel(C) pgl(x3)

Pg, (%)) pez(C) pez(x3)
pen(x]) pgn(C) pen(x3)

Pe](x])'-pez(x]) 0 Pel(x3)'-P92(x3)

Pez(xl) Pez(C) Pez(x3)
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= {pez(xl)"Pe](xl)}{pen(c)pez(x3)-pen(x3)pez(C)} +
+ {Pez(x3) - pe] (X3)}{Pen(xl)p62(C) - peu(C)Pez (Xl)},

which can be rewritten to f(x3) < f(xl) as was to be proved.
So there exists a ﬁl > 0 with f(x3) < El < f(xl) for all X, < C and

Xq > C, that is there exist k and ﬁz such that

1

(18) PG"(X) > Elpel(x) + Ezpez(x) when x # C
(19) pen(x) = E]pel(x) + Ezpez(x) when x = C.

Furthermore, ﬁz = {pe"(C)/pez(C)} - El < {pen(C)/pez(C)} - f(x3) <0

by assumption (b), and so Problem 24 implies that the strict inequality
must hold in (18) by which (16) and (17) are proved.

Application of Theorem 5 (ii) gives that @, minimizes Eeuw(X) subject’ to
(25). Similarly it follows that ¢b minimizes Eew(X) subject to (25) for
6 > 92. By comparison with the test @(x) = o we see that Eewo(X) <o

for 6 < 6] and 0 2 6

9+
(iii) In the definition given in problem 23 a family of distributions with
densities pe(x) is said to be of BSlya type if, among other things,

pe(x) is continuous in 6. To avoid serious difficulties we suppose also

in this problem that the probability densities pe(x) are continuous in 9.
Then we can follow the lines of the proof in the book (p. 90), yielding
that if B(09) does not satisfy (iii), there exist 68' < 08" < 8" and

X{sXysXq such that
pen(xi) = k]pe.(xi) + kzpen(xi), i=1,2,3.
This is however impossible in view of Problem 24.
(KARLIN (1955, 1957))
Problem 26.
We prove the following (stronger) result:

Let © be a real parameter and let the random variable X have probability
density pe(x) (with respect to some measure p) with strictly monotone
likelihood ratio in T(x) on S = {x : pe(x) > 0}, where S is independent

of 0. Suppose 6] and 62 are such that 6] < 62 and that there exist
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; 92. It will be shown that under these conditionms a UMP
6 9= 92 against XK' : 6 < 6] or 6 > 92 does not exist.

67 < 0 and ©
test of '

Let 0 <a <1, 6* < 6 and 9 > G . By the proof of Theorem 2 there exist

*
MP size-o~tests w and wz for testlng H HI 6 against K : 6 = 61 and

1 1

* *
H, : 0 = 62 against K, : 6 = 9 respectlvely, glven by

2
i <
w](x) =Y, when T(x) = c,
0 >
and
1 >
wz(x) =Y, when T(x) = CZ'

0 <

Comparison with the test ©(x) Z o yields in view of Theorem 2 (iv) that
@, and ¥, are also size-o~tests for testing H' against K'. Suppose that

¥

0 is a size-0 UMP test for testingH' against K'. Then it follows that

Ee;‘.wo(x) 2 Eezwi(x)’ i=12,

and hence ¢b is a level-a MP test ‘both for testing HT against Kt and

. * 3 e o o .
for H; against K According to Theorem 1 (iii) there exist constants

9
kl and k2 such that except for a pe—null set N

1 >

(20) wo(k) = when pe*(x) klpe (x)

1 1 .

0 <

and
1 >

21) wo(x) = when pe;(x) kzpez(x).
0 <

Let A =S8 n ﬁ, then Pe(A) = 1 for all 6. Suppose
Pe*(x) > klpe] (X)
1

for some x ¢ A, then by the fact that pe(x) has monotone likelihood ratio
in T(x), we have for all y € A with T(y) < T(x) that peT(y) > k1P6 ),

and hence by (20) that wo(y) = 1. Then (21) implies that pe*(x) 2pez(x),
and therefore for all y ¢ A with T(y) > T(x), we have that
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peg(y) > kzpez(y), implying that wo(y) 1. So in this case wo(y) =1
for all y ¢ A, in contradiction with o < 1.

Similarly peT(X) < klpel(x) for some x ¢ A leads to a contradiction.
Therefore pGT(X) = klpel(x) a.e., in contradiction with G; < 9]. The

conclusion is that such a UMP test wo does not exist.
Section 8

Problem 27.

1 >
= r -

w(x],...,xs) = 4Y when Zi=1 x; = C,
0 <

with Y ¢ [0,1] and C chosen such that they satisfy Ew(Zl,...,ZS) = qa,
where Zi’ i=1,...,s are independently distributed with Poisson dis-

tribution P(A¥) and Z?_ ¥ = a,
i i=] i

The joint density of (X],...,Xs) with respect to counting measure on N is

G = I eTiari/x !
P x) = e L/x. =
(AI"'.’AS) i=1 1 1

S S b4 ] -1
= [exp{— z A.}] < I A, -{_H x.!} .
. i=1 1j i=1 1 i=1 1

Let (u],...,us) be any alternative, i.e. Z§=l ui > a, then

(uT,...,u;) € H, where

Since

s
X .= iff =
SR TCE e Ly ke e (),
< 1 s < 1 s
where k is some constant depending on (u],...,us), a and C, Theorem 1 (ii)
implies that ¢ is MP for testing (U?,--.,U:) against (ul,...,us).

Since the distribution of Zz=l X, depends only on Zi= Ai’ and

s
D2
i

_ 1
-1 Ai < Zi=] Ai implies that

E(Al,...,xs)w(xl,...,xs) < E()\,’.“’)\;)w(xl,...,xs),

¢ is MP for testing H against (u],...,us) at level o. Since ¢ does not

depend on the particular alternative chosen, @ is UMP.
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Problem 28.

(i) In order to determine a uniformly most accurate lower confidence
bound, we have to find the acceptance region A(EO) of a UMP test for
H(EO) : £ = EO against K(§)) : € > £+ Defining p(£) by p(£) =

PE{XI < Eo}, it follows that, just as in Example 8, the joint density of
Xl""’Xn at a sample point KiseensX satisfying

KipseeosXy < EO < XjpoeeesXj o
is given by

p(&)™(1- P(‘E))n_mp_(xil)o--P_(Xim)P+(Xj PR (xg s

where we use the notation of Example 8. This means that the MP test for

testing HO : & = EO against K : & = El > EO is given by

. >
m n-m
©(x,,...,x ) = 411~p when p(E) (1-p(&)) = C,
i n (%)n
0 <
or equivalently

1 <
w(x],...,xn) =4{l-p when m = Kk,

0 >

where k and p satisfy
P{M < k} + (1-p)P{M = k} = & for £ = Eps

and M is the number of X's < EO. Now for & = EO it holds that
piv - m) - (2)p)7,

implying that k and p satisfy

k-1
2 (D a-o()mn -
j=0 ] k
that is

n n

o X (r-‘)(%)“+ (-p) X (r.‘)(%)n = 1-a.

j=k \J j=k+1 \J

Since the test is independent of the particular alternative chosen, it

is UMP. This test can also be written as
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i x(k) > EO
w(x],...,xn) =41 - p when x(k) < 50 < x(k+]
0 x(k+l) < EO.

Hence Theorem 4 (ii) implies that a uniformly most accurate lower con-
fidence bound is given by
(k)

X P
g = { (k+1) with probability
X

1-p.
(ii) If & is a median of F, then

(k) (k+1)

IA

PelE(X 5. X)) s &}

n

£} = pPg{x < E} + (l—p)PE{X

(3w + a-p) X (Bom -

n
=pz
]= J=k+

i=k

(iii) The only difference with part (i) is that instead of p(EO) =i,
it now holds that p(EO) = p, and so for £ = EO

P{M=m} = (3) pn(1-pP ™,

Hence we obtain that a uniformly most accurate lower confidence bound

is given by
o)

P
£= { (k+1) with probability
X

1"99
where k and p satisfy
n . . n . .
oz (’-‘)pJ(l-p)“ T+ (1p) X (‘-‘)pJ(l—p)“ I = 1-a.
J=k J j=k+] ]
(THOMPSON (1936))

Problem 29,

Let P;s i=1,2,3,4, be the probabilities with which H is rejected when
X takes on the value i. To find the most powerful test of H: the dis-
tribution of X is P0 or Pl’ against the alternative that it is Q, we must

solve the following problem:

M 4 3 2 4 .
maximize T3P + 3P, + ]—3p3+ T3P, subject to
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0<p, <1, 1i=1,2,3,4.

With the help of e.g. the simplex method, it may be verified that for
o = 5/13 the solution of this problem is P| =Py = 1, Py = Py = 0 and
for a = 6/13 it is Py =Py = 1, Py =P, = 0. So in both cases the most
powerful test is non-randomized. We have thus

= {1,3} ¢ {1,2} =

Rg/13 Re/13°

(STEIN (1951))
Problem 30.

(i) Let X and Y be independently distributed as b(n,pl) and b(n,pz),
respectively. Let H : Py < py; K (pi,pé) with pi < pé and pi-fpé = 13
w =v{(p?,p;) : p; < pT}; w' = {(,}; A a probability distribution over
1, By & (py»py) = (4,4) and a <« (0,}).

By the fundamental lemma of Neyman and Pearson the most powerful level

w such that A(w')

0 test for testing Hy against K is

! >
©(x,y) = {Y when (;)(2>(pi)n_Y+X(Pé)y+H_x - n\2—2n

y/

3

]

P
TN
H B
——”
TN

or equivalently, since pé > p;

1 >

©(x,y) = {Y when y-x = C,
0 <
where C and vy satisfy P(% %){Y-X > C} + YP(1 1){Y-X = C} = a, For C < 0,
H 232
it holds that P(l %){Y-X >¢C} >4, soa < { implies C > 0. Furthermore,
2y
since P, ,{Y-x >0} + {p,, , {¥Y-X =0} = }, it follows that
(292) (i,f)
Yy ¢ [0,4) if C = 0, and since P(l l){Y-X >n} = 0, that Y € (0,1] if C = n.
252
By Theorem 7 it is sufficient to prove that ¢ is of size < 0 with respect

to H : P, < Ps i.e. to prove that

su B(pY,py) < o = B(3,1),
0}, ppew 17 i
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*

where B(p?,p;) =P %, p¥ {Y-x>c} +vypP \

0 o p*){Y-X = C}. For p; <p
t] E]
it holds that 172 172

B(p],Py) = E(P ot o (T X>C X}y, oy {T-x=c|xh
17P2 1°P2

< E(P Y-X>C|X} + yP Y-X=C|X}) = ),
( pilc,pulk{ , Y P?’pT){ | ) B(P]’Pl)

where the inequality follows from Example 2 and Theorem 2 (ii).
Finally we shall prove that
(22) B(],p] < 8,1, ] < [0,1].

To this end it suffices to prove that for all nonnegative integers ¢ and
all p € [0,1]

(23) Pp{]snl 2 ¢} < P%{]snl > e},

where Sn = ZT (Yi-Xi) (see the hint). First we show that Sn has a

unimodal distribution under p = 4, i.e. for all nonnegative integers ¢
(24) P%{Sn =c} 2 P%{Sn = c+1},

1 — = = — = = — = e = l
Indeed, since P%{Yn X 0} = § and P%{Yn X 1} P%{Yn X 1} =}

hold, we have

= c}

1 1

P%{Sn =c} - P%{Sn = c+1} = %[P%{Sn_

= c-1} + P {s
2 o~

- P%{Sn_ = c+l} - P%{Sn_ = c+2}],

i !

which is nonnegative by the induction hypothesis; note that for c = 0
the first and third summand in the last expression cancel because of
symmetry. Since (24) clearly holds for n = I the unimodality has been
proved. '

For ¢ = 0 inequality (23) is a trivial equality. For ¢ = | we have



65

Pp{{sn[ > c} = Pp{]Yn-Xni-Sn_]] > c}
= p(]—p)[Pp{]Sn_1| z c-1} + Pp{|Sn_l[ > c+1}]
+ 7+ (-p I tls | > e}
< p(l—p)[P%{|Sn_]I > e-1} + P%{[sn_1| > c+l1}]
(25) + Gl a- Ry s ] 2 o)
= P%{[Sn_ll >c} + p(]-p)[P%{|Sn_1| = c-1} - P%{|Sn_l] = c}]
< P%{|Sn_]| z e} + %[P%{Isn_][ = c-1} - P%{[Sn_ll = ¢}l

= 1 1 -1} 4
ZP%{lsn—ll 2 c} + “[P%{lsn-ll 2 c-1} + P%{lsn-ll 2 c+1}]

= P%{Isn] > c}l,

where the first inequality follows by induction and the second one from

the unimodality (24).

(ii) Since B(p,p) < o for p ¢ (0,%) u (4,1), it holds that B(pl,pz) <0
for alternatives P, <P, sufficiently close to the line Py = Py- Against
these alternatives the level a test 9(x,y) = 0 has power . So the test

described in (i) is not UMP against the alternatives Py < Py-
Problem 31.

(i) Let T and A denote the sets of possible 6- and n-values, respectively.
In view of theorem 1 and (b) there exists a level o test wo which is most

powerful within the class of tests based on T, satisfying

1 >
bp(t) = 1y when p, (£) = Cpy(t),
0 <

for some C and vy, where

dpg.

Pr = ek

i T T, *
d(Psy +P

and
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(26) B Vo (D = o
Condition (b) of the problem implies that for all n e A

in view of (26). Let w* be a test which satisfies

E m*(x) <a

Bgsn

for all n ¢ A. Consider for any fixed 1 € A, a version of Ee n[tp*(x)l t]
td

that does not depend on 9 It follows from Lemma 2.3. (iii) that

P (N ) =0 for all 8 ¢ T, where

N, = (g5 En[w*(X)| t] ¢ [0,11}.

Define wn by
En[w*(x)] t] when t ¢ Nn
v (t) = {
0 when t ¢ Nﬂ’

then wn is a test with
* *
= = < .
Eeown(T) EeoEn[¢ (x) | Tl Eeo,ﬂw X) < a

Since the test wO is most powerful within the class of tests based on T,

it follows that
.
Eel,nw (X) = Eelwn(T) < Eelwo(T) - Eel,nwo[T(X)]-
Hence wO[T(x)] is a UMP level O test which depends only on T.

(ii) If B denotes the class of Borel subsets of the real line and (X,A)
is a measurable space with random variable X, satisfying X ¢ B, A ¢ B
and (-~,u] € A with u as in Example 8, then defineP= {P : P a probability

measure on (X,A)} and
= {(B_,p) : P_ e P,P_c P,P_((-=,ul) = P, ((u,®)) = 1}.

Because for any p ¢ [0,1] and (P_.P+) € A the probability measure P ¢ P
defined by

27 P{X ¢ A} = P(A) = P_(a)-p + P (8)-(1-p)



for any A ¢ A, satisfies
p=P{X<ul, P(A) =P{XecA | X<u}l (if p > 0) and
P(A) =P{XecA|X>ul (ifp<1),

it follows that the mapping from [0,1] x A to P as defined by (27),

is a surjection. Hence

P={py : 6= (p,P_,P) ¢ [0,1] x A}

]

yields a parametrization of P. Now consider the product space (Xn,An)
with random variable (XI’XZ""’Xn)’ where X" = X x X x ... x X and A"
1><A2><...><An
(A]""’An e A), and the class of product probability measures

is the smallest 0-field containing the sets A

PP = {P® : P" =P x ... xP, Pe P} = {P

[er =]

Define the statistic M : X* » {0,1,...,n} by
. n
M(x) = M(x],xz,...,xn) = izl I(_m,u](xi).

Now, M(X) has a binomial distribution with parameters n and p and the
conditional distribution Pg{x e A ME) =m} (Ac ATy depends only on
(P_,P+) € A. We have thus checked that M(X) is sufficient for p ¢ [0,1]
in the presence of a nuisance parameter (P_,P+) € A, Hence by (i), the

test wO[M(x)] with
1 >

_ /n m,, wm_ *fn\m n-m
bo(m) = 1y when \m>p,(1 py) c (m>p0(l py) s
0 <
or equivalently
1 <

Y whenm=C
0 >

[

Vo (m)

is UMP for testing B P = Pq against K p=rp < Py at level of
significance o. As in Example 8 it follows from monotonicity and inde-
pendence of the particular alternative chosen that wO[M(x)] is a UMP

level o test for testing H : p 2 Py against K : p < Py-

(FRASER (1956))

: 8 e [0,1]1 x A},

67
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Section 9
Problem 32.

Let El < m be a particular alternative. Consider the testing problem
of the simple hypothesis ;I E=n-= (m+n)_](m£1-+nnl) against the
simple alternative K £ = El, n=n, with level of significance o. By
the fundamental lemma of Neyman and Pearson (Theorem 1) the MP test

rejects when
-1 m n
en e (-} T x-Ep® -4 I ¥.-np?
i=1 1 j=1 ki 1

> eomMewp (-4 T (-t ran ) M7= 4 T (x- e vn ) %)
1= J—

where N = m+n, or equivalently when

¥-X> c&,
- -1 m = -1 n
where X = m Z =1 X ; Y =n Z._] YJ and c satisfies PH*{Y X > cy '} =
o. Hence c (mnN )2¢ (l—u), where @ -1 denotes the inverse of the

standard normal distribution function. Since P(g f-3> Cq '} < a for
’

all (&,n) with & > n, the test is MP for testing H :n < £ against K*.

The test does not depend on the particular alternative E < n chosen.,

Therefore it is UMP for testing H against K.

Remarks: 1. The Kullback-Leibler "distance" from a probability measure P

to a probability measure Q is defined as

{Ep log (dP/dQ) if P is absolutely continuous w.r.t. Q

G otherwise.

Define by 1(6],62) the Kullback-Leibler "distance" from a normal-N(Gl,l)

distribution to a normal N(Oz,l) distribution. Then 1(91,92) = %(91 2.

8,)
Furthermore the Kullback-Leibler "distance" from the probability measuie
induced by the vector (Xl""’xm’Y]”"’Yn) under (El,nl) to the
probability measure induced by the same vector under (£,n) is given by
mI(El,E) + nI(n],n) This function attains its minimum at £ = 1 =

(m+n) "~ (m€ p+on ) if (&, n) runs through the set {(&,n);n < £}. So the point
((mn)~ (mE +nn Y, (mtn) (mE +nn,)) is that point of the null hypothesis

nearest to the alternatlve measured in Kullback-Leibler "distance".
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2. The same test arises when we reject for large values of X given

X+Y (cf. Section 4.5).
Problem 33.

(i) We can restrict attention to the sufficient statistics

n 2 n 2
U= T (X,-8)° and V= T (Y.-m"~.
i=1 1 j=1 J

Their joint density equals
f(u,v) = Cn-CmO_mT—nu(m/2)~]v(n/z)_] exp {—u(ZOZ)_I-v(ZTZ)-l}.

where Cn and Cm depend only on n and m, respectively. Consider the

hypothesis

(28) H: T2 < cz against K : 12 > 02.

Let O be any significance level ¢ (0,1), and let (0%,T%) with O? < T%

be any particular alternative. The least favorable distribution A on H

should be concentrated on the line 02 = T2. Choosing A degenerated at the

point (T%,Tg), with Tg to be specified later, the testing Problem (28)

reduces to

CT;(m+n)u(m/2)—1v(n/2)—l exp {~(u4-v)(2T§)_1}

1

H, : f(u,v) =
(29) { A

CG—mTInu(m/Z)-]v(n/Z)—l

Kq f(u,v) i exp {—u(ZG%)_ -V(ZT%)_I}-

The most powerful level o test for (29) is given by

! 2.-1 2.-1 2.1,
©(u,v) = { when exp {—u(201) —V(ZT]) + (u+v)(2T2) } K,
0 <
which is equivalent to
1 >
o(u,v) = when —(0_2 - 1_2)u+ (T_2 - ‘r_z)v K.
0 1 2 2 1 <

The comstant K satisfies Ep(U,V) = o, where U/T§ and V/Tg have chi~
square distributions with m and n degrees of freedom respectively. Choose

Ti € [Oi,T?] such that K* = 0. This is always possible since

-2 -2 -2 -2
1='{—(o1 -T, YU + (T2 -7 v > 0}
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0 if Tg > Tf
. 2 2
=41 if T2 < 0]
-1.2-2,2 2 . 2 2 2
P{Fn > ™ To0 (T c )/(r Tl)} if of < Ty < T s

where Fn m has an F-distribution with n and m degrees of freedom. Denoting
H

the upper a-percentage point of this distribution by Fa’ we find

2 -1
01(]+nFoam )
2 2 -2 -1

]+01nFaT] m

Hence the rejection region for testing HX against KO is

{(u,v) : v/u 2 ¢}, where m ¢ = F,. Since

P{F Z'OZT_zmn_IC},
n,m

P(Oz T2){V/U > C}

P(02 T2){V/U > C} attains its maximum o over H when 02 = T2. It follows

b4
that the test defined above is also most powerful for testing H against
KO. Since this test does not depend on the particular alternative chosen,

it is UMP.
(ii) We can restrict attention to the sufficient statistics

(Yj—i?)2 and Z = Y.

iMs

o =2
U= 5 (X,-%0° W=%, V=
i=1 1 j

Their joint density equals

£(u,v,w,z) = C__.C gffﬂi uﬂm)e@{WW€)Mw)L
2T n-1"m-1 m-1
o (Zﬂd m )
1_(_11;32_/_2_ ~v/(27%) exp {—n(z-n) /(212 )}
n-1 1
T (2nr n )

Consider again the testing problem (28). Let a be any 31gn1f1cance level
and let O%,T],El,n be any particular alternatlve(c <T ) The dis-

tribution A over H should be such that
2 2 2
(30) J 80”7, E,mdr(e?,12,E,m)
H

comes as close as possible to g(O%,Tf,El.n]), with
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exp {—u/(ZOZ)'-V/(ZTz)}. exp {-m@-£)2/(26%))

om1,.n-1 (Zﬂozm—])%

2 .2
g(o”,17,8,n) =

. exp (nen)’/ @)
(21TT2n_])§

We take A equal to the product of X],X and XB, where X is a measure over

2
{o“ 21 } A a measure over £ ¢ R and A, a measure over n ¢ R. It is

natural to concentrate Al on {02 = T2}; :ake Xl degenerated in (T%,Tg),
where T% will be specified later. For the same reasons as for the testing
of Hl or H, against K in Section 9 we take l degenerated at El, and X

a normal N(n],(Tf 2)/n)*dlstrlbutlon (Notlce that T, must be < )

As in Section 9

exp {-n(z-m’/ (2t}

—~ dr, ()
(ZnTzn 1)% 3
is the density of the sum of two independent normal N(O,Tz/n) and

N(n],(T%'-Tg)/n) variables. Therefore, (30) becomes

exp {-(wv)/(21)}  explom(w-£ )2/ (275))

- 1
(2m§m ]) z

m+n-2

Ty

exp {—n(z-n])z/(ZTf)}

_])% .

(ZHT%n

The testing problem (28) then reduces to

Hy : f(u,v,w,2z) =
m(w-§ )2 n(z-n )2
(w-3)/2_(n-3)/2 utv 1 1
Co-1Cp-1t v TeXpYT T T 3 - 3
212 ZTZ ZTI
™ amrla ‘)5(2nT -1y3
(31) 4
K0 : f(u,v,w,z) = ot )2 - 9
c (m-3)/2_(n-3)/2 _u __y  Bepn mlzenp
n-1"m~1 v €XPp 2 7 7 7
20 2T 20 2T
1 1 1 1
1
o™ 1t l(21r0 ™ ])%(ZHT ~lyz

- 1

The most powerful level o test for (31) is given by
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>

1
o(u,v,w,z) = J when -(0;2-T;2)u-m(o;2~152)(w—£1)2-+(TEZ—T;Z)V K*.

lo <

The constant K* is determined such that
P(-(0)% - ;) 0+ G- £)7] + ;7= 5 > K'Y = o,

where U, W and V are independent and U/Tg, m(W-El)z/T§ and V/T§ have
a chi-square distribution with (m~1), 1 and (n-1) degrees of freedom,
respectively. In the same way as in (i) we can take Tg € (O?,T?) such that

K = 0. Hence the rejection region for testing HX against KO is
W/ @+nw-gp% > ¢},

where E?T C is the upper o percentage point of the F(n-1,m) distribution.
To prove that this test is also most powerful for testing H against KO

we have to show that

2 2 2

attains its maximum over H on ¢° = 1° = Tg, £ = E]. Now for all 02 > T
and for all &, )

2 2
v/t g
P=P 2 .2 2 C
(€,0%,1 ){ u/o” +mw- £,)%/0 }

2
T
v 2
o 0 o
=P 2 .9 { — P —C} .
R A T

where V0 and U0 have a chi-square distribution with (n-1) and (m-~1) degrees

of freedom, and WO has a normal N(Eméc_l,1)—distribution. Since 02 2 T2,

P

A

P 5,02y o/ (Ug + (W, - Elmic_])z) > ¢}

1 _
= P(g,oz){(wo" lmzo 1)2 < VO/C—UO}

_re } ~1,2
= g g P(E,UZ){(WO €1m c ) < vO/C uo}dPVO(vo)dPUO(uo).
1o
Since the integrand is maximal if EW, = ElmZO 1, that is if & = El,

P < P(gl,cz){(wo-glm%g'l)Z < Vo/C-1,}

P{(w;)2 < Vo/C-Tpk,



where Wg has a standard normal distribution. So

> ¢}

av}
In

*x, 2
LY,/ (W) + Up)

2
= P(n,£,,13,7% W/ @ 0@ -EDT) = c}.

It follows that the test defined above is most powerful for testing H

against K.. Since this test depends on the alternative, and since the

0
test which is most powerful at a particular alternative is unique by

Theorem 1 (iii) and Theorem 7 (ii) there exists no UMP test for testing

H against K.

Section 10
Problem 34,
Following the hint this problem is easily solved.
(STEIN (1946))
Problem 35.

(o]
(1) Since EN = % nP{N = n} = z P{N = n}, the preceding problem
implies that
b n
EN<C X §
n=1

for some C > 0 and § ¢ (0,1), and therefore that EN < o,
(ii) Similarly we get

(] (o]
e™M < ¥ ofpiNcnlcc T (SeH)P <
n=1 n=1

for t ¢ (0,~logd8), so that ENk < o for all k = 1,2,3,... .

(iii) Suppose Pi{Z =0} =1 for i =0 or 1. Then

i

Pi{log (p](X)/pO(X))
80 po(x) = pl(x) a.e.Pi, and hence PO = P].

(STEIN (1946))

0} = 1, that is Pi{pl(X) = po(x)} =

73
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Section 11
Problem 36.
(i) In the situation of Examples 9 and 10, (35) p. 99 becomes
X I-x. -x. xs-1 -1
- Loy o i 7%, 1 - _
z; = log [p, (I-p)) Py (1 Pgy) ] (2%, - 1) 1og(q0pO ).
Hence the test continues as long as
~a = (log A)/log (4p=)) <2 T x. -n < (log A.)/log (¢.p=)) = b
- og 0 g qopo i=1 xi n og 1 g q.opo .
Since a and b are positive integers, we have
P]n/pOn = A] on Rn and pln/pOn = A0 on Sn,

where R and Sn are defined on p. 98. Therefore, in (34) equalities hold,

which entails that the approximations in (38) and (40), p. 103, are exact.

(ii) 1If p # }, then equation (41), p. 103, has a unique nonzero solution

h, thus satisfying

-1.h -1.h
plagpy ) + q(Poqo Yh =1,

which is equivalent to

-1.2h -1.h
a(Pgap )7 = Py ) +p =0,
from which one cohcludes that
1
~1.h 12v1=4
(prgn I = —=L 9P -
0% 2q
p/q .
However, by assumption Py < P = 4p» and h # 0, implying that (poqal)h =

pq—l. Substituting this in (38), p. 103, one obtains

-1 -
1 —Ag 1 - (qgpq ) ah
B(p) = =
BB (- yPB _ (g oo1y-ah
1™ % 99Po 99Po
(32)
1= (pq—l)a qapb_paﬁb

T T3 TT.a © atb asp forp# i

P Q) -(gq ) qQ -p

B(p) is non-decreasing by Lemma 4, and the right-hand side of (32) is

continuous, whence
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1~ (Pq_l)a a a
B(L) = lim B(p) = lim —— - = -
Pi b (e HP - (g H? ~b-a atb

(iii) Let LA be the capital of the gambler who starts with capital a,
after playing n times; define Vg = a. The games stop if either w o= 0
orw = atb. The relation to the sequential procedure is established by

the mapping v, > 2 Ztil=] X, -n+a.
Problem 37.

. . . +
First observe that for any i the randomvariables I{Nzi} and Zi = max (O,Zi)

are independent, since I } is a function of (Z]’ZZ""’Zi—l)’ while

. {N=i
Zi depends only on Zi' Hence

[or]

Nen} | Z Zl) =E<n§1 JE L {N=n} +>

+ + o
E(Z] + ... +ZN) = E(n_

R N o R
_E<i§1 E I{N=n}zi> —E\i)=:1 I{Nzi}zi) =z E(I{Nzi}z

0
+ oot "
Bliysq1B2p) = I PORDEZ, = (BMEZ) <

In the same way it follows that

E(Zl + .. +ZN) = (EN)(EZl) < oo,
Hence

E(Z1+...+Z

+ + - -
N) E(Zl+ ...+ZN) - E_(Zl+ ...+ZN)

= (EN) (EZ] - EZ]) = (EN)(EZ,),
which had to be proved.
(WOLFOWITZ (1947))
Problem 38.

(i) Since Y(h) = EeM?

of Theorem 9, Chapter 2, that

< o for all h ¢ (-o,»), it follows from part (ii)

P"(h) = I hzgp 2(2) =

2hZ

- f 2% thP (z) = Bz°e"°,
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which is positive, since P{Z = 0} < . For h > 0, it holds that
f ethPZ(z) 2 f ehzdPZ(z)
(Log (1+8),)

(1+6)PP{z > 1og (146)}.

¥(h)

v

Therefore, lim Y(h) = ». Similarly, lim y(h)
heo h—co ¢ 7 . .
0 and that w'(ho) = EZe 0% = 0; furthermore h0 # 0 since

EZ # 0. Because $(0) = 1, there exists a unique hl # 0 for which w(hl) =1,

©, This means that

has a minimum at h

(ii) Putting Z = 1og{pe (X)/peo(Xﬂ-we obtain from part (i) that the
1
following conditions are sufficient for the existence of a non-zero

solution of
Pg,(X) 7h
E[—L ]=1
91 pg. (X)
0
a) Ee log {pe](X)/peO(X)} exists and does not vanish;

b) Ee{pel(x)/peo(x)}h exists for all h ¢ (-o,x);

c) Pe{(pel(X)/peo(X)) < 1—6}Pef(pel(x)/peo(x)) > 146} > 0 for some § > 0.

Problem 39,

1

(i) LetX=n'3" Xi' The most powerful test for H against K rejects

i=1
when x > xR(n), where xR(n) satisfies

P{X > xR(n)} =0 when 6 = 0,

that is xR(n) = n—£ » where ®(u, ) = 1~0, and ® the distribution

u
1-a I-o
function of the standard normal distribution. The power against 6 > 0 as

a function of n is then
= p % -7 (% -4 - 1= .
f(n) = Pe{X > xR(n)} = Pe{X > n I—a} =] ¢(u1_a n%g).
Extend f(n) to all non-negative real values by defining
1
f(x) = 1-®(u]_a-x26), x = 0,

then we have

£'(x) = w(u]_u-x*e)-gx'%e



and

=3 1 1
£'(x) = §0x Zp(u,_ - 0xP){~0%x+ bu_x* - 1},

0 has solutions

The equation f'"(x)

1
xi = {u + (u2

,2 1ot (W =D}/ (20).

This means that f"(x) > 0 for x ¢ (XI’XZ) if u%_a > 4, Therefore, f(n)
is not necessarily concave. An example is given in part (ii), where

2
o 4

indeed u;

(ii) For o = .005 and 0 = }, we have

1-®(1.075)

£(9) = 1—¢(u.995 - 3/2) 714]2;

£(2) IV2) = 1-®(1.868)

1 -®(u .0308;

.995

£(16) = 1-®(u - 2) = 1-®(.575) = .2826.

.995
Taking 9 observations we have power .1412; taking 2 or 16 observations

with probability } each, we have power

(.0308)/2 + (.2826)/2 = .1567 > .1412.

(iii) a) For ocl = ,001 and n, = 2 we have

£(2) =1 -2(u - Y2y = 1-®(2.393) = .0084;

.999

for 0y = .009 and n, = 16

£(16) = 1 -®(u - 2) 1-®(.366) = .3557.

.991

This gives power (.0084)/2 + (.3557)/2 = .1821 > .1567 > .1412,

b) Taking o, =0 and n, =0 yields £(0) = l-—<ll>(u1 -0) = 0, and oy = .

and n, = 18 gives £(18) = 1-®(u 99 ~ 1/18) = 1-9(.209) = .4168; this

gives power -0 + (.4168)/2 = .2084 > .1821 > .1567 > .1412.

77
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CHAPTER 4

Section 1

Let @, be a level o test which is UMP unbiased and suppose there exists a

level o test ¢, which is more powerful against alternatives in Q' # @ < Q_,
1 K

and at least as powerful against all alternatives in QK, i.e.

Bp, (6

Bp, (0)

Then, because wo
By, (6

and, of course,
By, (6

Hence @, is also

Since this is in

> BmO(G) for 6 ¢ Q

> 0 for 6 ¢ Q' < Q_.
&OO( ) or 6 ¢
is unbiased,

> By () > for 6 € 0

for 6 ¢ Q

IN
Q

H

unbiased. But ¢, is more powerful than ¢, against Q'.
1 0

contradiction with the fact that @, is UMP unbiased, it

follows that such a test wl cannot exist.

Problem 2,

(i)  The critical level (see p. 62) is defined as:

&(x)

inf {a : o is a significance level at which the hypothesis
would be rejected for the given observation x}

inf {a : x ¢ Sa}'
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(ii) First of all we show that
€D {x o) <x} =1{x:xe¢ Su} for all a ¢ (0,1).

If x € Sa then obviously &(x) < o,
If G(x) < o then by condition (b) x ¢ Su' for all o' > a; hence
a>a Yo "o ~
Now it follows immediately that 0.(X) is uniformly distributed over (0,1)

since by (1) and condition (a) we get:
Peo{&(x) <o} = Peo{X e S,} =a for all a e (0,1).

(iii) Since the tests Su are unbiased, (1) implies that under any alter-

native 9
Pe{&(x) <a} = Pe{x € Su} z o= Peo{&(x) < a}.

Section 2
Problem 3.

Let X have the binomial distribution b(p,n).
For testing H : p = Pp against K : p # P, at significance level o consider

a test of the form

1 when x < C] or > C
o(x) = Y when x = Ci’ i=1,2
0

< <
when C1 X C2

First consider the case n = 10, Py = .2 and o = .1, Then @ is UMP
unbiased for C] = 0, 02 =4, Y1 = ,5590 and Yz = ,0815 and ¢ is an
equal tails test for C1 = 0, C2 = 4, Yy = .4657 and Y, = .195. The power
functions are plotted in Figure 1 (the dotted line is the power function
of the equal tails test). Figure 2 is an enlargment of part of Figure 1,
which shows that the equal tails test is (slightly) biased.

Secondly let n = 10, Py = .4 and 00 = .05. Then ¢ is UMP unbiased for

c. =1, C
for C, =

1
these tests are plotted in Figure 3 (again the dotted line is the power

5 = 7, Y, = .5034 and Yy = .2677 and @ is an equal tails test
i, C2 =17, Y] = .4702 and YZ = ,2992. The power functions of
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function of the equal tails test).

Problem 4.

Let X have the Poisson distribution P(T), hence the density of X with

. . T .
respect to counting measure on N is (e x!) . Since T(X) = X and

ETO(X) =T

Problem 5.

—lexlogT
0 condition (6) can be rewritten as follows:
ETO[T(X)‘-D(X)] = ETO[T(X)]OL

0
Ty = ETO[ch(x)] = T, (1-0)

ETO[X(P(X)] = 1.0

Erolx(l = 0(X)) ] =1,(1-0) .
Tx 2 1

(iff ¢, = 1)
Co-1 %1 2 i1
T -T
z e (xgl)' + 3 (l—’Yl)e 0 DT 1-a.
x=C+1 * i=1 ‘

Tn/e has a Xz-distribution with n degrees of freedom. Hence

o F1 -3
P{T <t} = P{T /6 < t/6} = Y e Ty
0 2" TG
t -1 Ly _X :
- 6 2 2 26
e dx .

[ ——x
0 2“/2r(%)

For varying 0 these distributions form a one parameter exponential family.

As in Example 2 p. 129 the UMP unbiased test for H :

has acceptance region Cl < Tn < C2 where C] and C2 are determined by

C2 C2
[ fyndy =] £ ,(dy = 1-a
Cy Cy

6 = 1 against K :

6 #1

with fn the density of a Xz—distribution with n degrees of freedom. The

power of the UMP unbiased test is strictly decreasing for 0 < 6 < 1 and

strictly increasing for 6 > 1 (see p. 128). Hence it follows from the
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table that to ensure a power > .9 against both 6 2 2 and © < .5 we need
at least n = 45 for the UMP unbiased test.

If the test is not required to be unbiased, we can restrict attention to
tests.in the class C, defined in Problem 4.8 (i). Let ¢ ¢ C with critical

. * .
points C, and C*. Then c¥ <c, or Ch > C.,. Hence from the solution of

1 2 1 1 2 2°
4.8 (ii) it follows that for n < 44 B(p(g) < B(4) = .895 or
Bw(Z) < B(2) = .898. Hence if the test is not required to be unbiased

n has to be at least 45.
Remarks

1. The fact that we do not gain one or more observations if we delete

the condition of unbiasedness follows from the fact that both B(i) and B(2)
are less that .9 for n = 44 and greater that .9 for m = 45.

2. Replacing .9 by another number (e.g. .6 or .2) one or more obser-
vations can be gained by using for example the maximin test (see Chapter 8)
Example:

for C] = 11.650 and C; = 38.979 B (}) = .615 and B (2) = .615 for n = 22

for C*¥ = 2.026 and C. = 18.937 B (}) = .226 and B (2) = .226 for n = 7
1 2 © (o
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Table - (UMP unbiased test)

=}

WO EWN —

.003
-085
.296
.607
.989
1.425
1.903
2.414
2.953
3.516
4.099
4.700
5.317
5.948
6.591
7.245
7.910
8.584
9.267
9.958
10.656
11.361
12.073
12.791
13.514
14.243
14.977
15.716
16.459
17.206
17.958
18.713
19.472
20.235
21.001
21.771
22.543
23.319
24.097
24.879
25.663
26.449
27.238
28.029
28.823
29.619
30.417

7.817

9.530
11.191
12.802
14.369
15.897
17.392
18.860
20.305
21.729
23.135
24.525
25.900
27.263
28.614
29.955
31.285
32.607
33.921
35.227
36.525
37.818
39.103
40.383
41.658
42.927
44,192
45.451
46.707
47.958
49.205
50.448
51.688
52.924
54.157
55-.386
56.613
57.836
59.057
60.275
61.490
62.703
63.913
65.121
66.327
67.530
68.731

.063
.081
.102
+124
.148
.173
-198
$224
.251
.278
+305
-332
.359
.385
<412
.438
.463
-488
-513
.537
-560
<582
<604
+625
-646
-665
-684
+702
.719
<735
«751
<766
-780
-794
-807
-819
-830
-841
-852
-861
871
-879
-887
-895
-902
-909
<915

B(2)

-080
.113
-148
.182
.215
2248
.280
<311
-341
370
-399
426
<453
478
-503
-527
-550
-572
-593
-613
-633
<651
-669
-686
+702
<718
-733
<747
-760
<773
-785
-797
-808
-818
-828
-838
-847
+856
-864
-871
-879
- 886
-892
-898
<904
-910
-915
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Problem 6.

The assertion that a UMP unbiased test for testing H : 61 = a, 62 =b
against the alternatives 91 # a or 92 # b does not exist, is mot true in
general. In the first part of this solution we give two counterexamples and
in the second part we state sufficient conditions under which the assertion

is true.
PART 1.

Counterexample 1.

T U . . .
If 4~ or V' are concentrated in (one or) two points a UMP unbiased test

exists,

w{1} = L, v arbitrary and
1-p, 20 = p(a) = &%/ (1+e%),

PROOF. Without loss of generality let u{o0}

T(x) = x. Definep= p(el) = eel/(]+eel), q

© = 1-p0.

Unbiasedness of @(X,Y) is equivalent to

{ pEezw(l,Y) + quzw(O,Y) > for all ez,p
pPE,0(1,Y) + ¢"E0(0,7) < @
«
(n { Eezw(l,Y)‘Z O, Eezw(O,Y) EN

E 9(0,Y) =a, E®(,Y) =a

Let wz(x,y) = wz(y) be a UMP unbiased test of Gé = b against 62 # b in the

8,0 (y)
one-paremeter exponential family K(ez)e 2 dv(v). Then it will be proved

that wz is a UMP unbiased test of HO : el = a, 62 = b against H, : 61 + a
or 62 # b.

®, is unbiased (cf. (1)). Let m*(X,Y) be also an unbiased test of H

1

0
1’ Then by (1) ¢f(O,Y) is an unbiased test of 62 = b against

92 # b and the same holds for w*(],Y).

Therefore

against H

IN

*
Eezw (0,Y) Eezwz(Y) for all 6

2

and

*
Eezw (1,Y) < Eezwz(Y) for all 8,
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implying

* *
Bp,,0,0 (X,1) = pEg. @ (1,) + qEg 0" (0,7)

I

PEg, 0, (1) + qBg 0, (Y)

Eezkp2 (Y) = Eg . ,0,92 (Xx,Y)
for all 6],02. So in this case a UMP unbiased test exists.

Counterexample 2.

Let p =V, T(x) = x, U(y) =y, © = {6 : f eexdu(x) < o} =R,

Suppose that uT and v are not concentrated in (one or) two points. Further-
more let C, < C, with “((Cl’cz» =0, “(Ci) >0 for i = 1,2, u((-M,Cl)) >0
and u((02,+m)) > 0.

We now prove that under these conditions a UMP unbiased test exists.

PROOF. Let p, (6) = C(@)eeciu(ci), i=1,2 with ¢(8) = 1/ e™au(x). Then

lim p,(0) = 0, lim p,(8) =0, p.(.) is continuous on R.
frt0 L fr—oo 1 .

Hence there exists a real number a such that pl(a) + pz(a) =

maxg {p](e) + pz(e)}.

Consider the testing problem H : 6, = a,8, = a against K : (91,02) # (a,a).

1 2
Let

o 2 Pa’a{(X,Y) ¢ {c,,c,} x {c;,c,}} and let
and let

a-P, a{(X,Y)<{e{c],cz}x{c],cz}} if (x,y) €
P,,at(%¥) e {C1,C, T H{C,C, T} {C,C } x {c,,C,}

o(x,y) =

1 otherwise

Then @ is a UMP unbiased test of H against K, as will be proved.

It follows by direct calculations that Ea’aw(X,Y) = o and
Ee],ez{l-'w(X,Y)} £ 1=-0 and hence Eel,ezw(X,Y) 2 o. Therefore ¢ is un-
biased.

Suppose m* is also unbiased and suppose Ee]’ezw*(x,Y) > Eel’ezw(X,Y) for



all 9],92. It can be shown (see part 2) that a.e. on (x,y) %
{CI’CZ} X {CI’CZ} w* = . We therefore have:
2 2

*
(2) iil jzl pi(el)pj(ez)w (Ci’cj) z

2 2
.E 'E Pi(el)pj(ez)w(Ci,Cj)
i=] j=1

with equality if 6] = 62 = a,
Divide both sides of (2) by {p](61)4-p2(61)}{p1(92)4~p2(02)} and write
ri(ej) = pi(ej)/ (pl(ej)+'P2(ej)), i=1,2, j=1,2.

Then
2 2 N 2 2
(3) .§ R ri(el)rj(ez)w (Ci’Cj) > 'E .f ri(el)rj(ez)w(Ci,Cj)
i=1 j=1 i=1 j=1
with equality if 61 = 92 = a,
Note that
_ %% (cq)
r; 8 = 55 5:C
e 3 luce )y + "3 2u(c,)
and hence
lim r,(0.,) = 1lim 1r.(6.) =0
a0 13 0 2 3
J J
and
lim r.(6.) =1im 1. (6,) = 1.
6j++w 273 9j+—m 13

Let 91 =+ +© in (3). Then, for all 62,

T, (8,007 (C,uC)) + 1,(8,)07(C,,C,)

2 rl(ez)w(Cz,Cl) +1,(8,)9(C,,C,)
implying
* *
@ (C,y,C)) 2 @(C,,C;) and @ (€,y5¢)) 2 0(C,,C,).
Similarly we obtain

* *

if 61 = 62 = a, equality holds in (3) (and ri(a) > 0) and hence
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* . .
©® (Ci,Cj) = w(Ci,Cj), i=12, j=1,2.

Hence ¢ is a UMP unbiased test.
PART 2.

In this part we formulate sufficient conditions under which the assertion
holds. First some preliminary considerations are made after which the

solution is split up according to two different situations.
Preliminaries.

In part 2 we require that

(4) UT and vU are not concentrated in (one or) two points

(5) (a,b) € int (@] x B (for simplicity)

2)
Consider the problems of testing the hypothesis H : 61 = a, 62 = b against

the alternatives

K] : 61 # a or 62 # b

K2 : 61 # a, 92 =b

K3 : 9] = a, 62 # b.
For 62 =b is fixed, we have a one-parameter exponential family. Then by
Section 2, there exists a UMP unbiased test @y, only depending on X, for
testing H against K2' Since 0, only depends on X, Ea b[(pz(X)] = o and
s

Ee],b[wz(x)] 2 q, 6 # a; it follows that Ee]’ez[wz(x)] 2 a, 61 # a or
62 # b. So wzis unbiased for testing H against K]. Analogously there
exists a UMP unbiased test @, for testing H against K3 which is unbiased
for testing H against K].
Suppose that @, is a UMP unbiased test of H against K1 then

o .
Eel,ez[wl(X,Y)] > Ee]’ez[wi(X,Y)] for all 91 # a or 92 # b because ®, is
unbiased for H against Ki’ i = 2,3, This implies that @ is also a UMP
unbiased test of H against Ki’ i = 2,3. In view of Theorem 5 (iv) in
Chapter 3 there exist constants k1 and kz such that a.e. W X Vv (product

measure)



1 <
@, (x,y) = { if C(a)(k] +k2T(x))eaT(x) C(el)eelT(x)
0 >

or, equivalently (see the theory on p. 127)

i T(x) * [C]’CZ]
wl(x,Y) = { if
0 T(x) € (C1 ,C2)

for some -~ < C1 < CZ < ©; a.e, Uxv, Similarly,

1 U(y) ¢ (,,p,]

wl(st) = { if
0 Uy < @D

for some - < D] < D2 < ©: g,e. U XV,

Situation 1: pfx : T(x) ¢ [C]ﬁz]} = 0.

Since U{x : T(x) ¢ [C],Cz]} =0=u{x : T(x) ¢ (Cl,CZ)} >0
=viy : u(y) ¢ [D]’DZ]} = 0, the distribution is concentrated on the
rectangle [CI’CZ] x [Dl’Dz] and 9, = 0 a.e. ¥ x v for the vertices.

Unbiasedness of Lpl is equivalent to

2 2
I T opyri0,(C,D ) >0
i=1 j=1
(6)
2 2 0..0
T X piryp, (C.,D.) <
i=1 §=1 37117
where

81C4 .
=p; 8 = cOpe’Mu(ey), i=1,2

Pi

- - 82D5 s
rj = rj(ez) = K(ez)e V(Dj)’ J = 1’2
pg = Pi(a), rg = ri(b)’

89

Note that @] = 02 =R, since the distribution is concentrated on a bounded

set. Note also that, if

(7) w(C;) > 0 and V(D) >0, i=1,2

lim p](e) =1, lim pl(e) =0, lim rl(e) =1, limr1
00 B-+co O+—c0 ->too 0>+

(6) =0, limpz(e) =1 ete.



90
Let 9] + +© in (6) then, for all 92,

rlw(Cz,D]) + rzw(Cz,Dz) >
and hence

w(CZ’Dl) 2 0 and w(CZ’DZ) Z 0O,
Similarly w(Cl,Dl)Z o and w(CI,Dz) 2 0 and hence by the second line of (6)
we have w(Ci,Dj) = 0. But this implies Eel,ezw Z oa: a contradiction (cf. p.
128, and Theorem 6 of Chapter 3).

If (7) is violated we have for instance u(Cl) = 0, then p, = 0 and (6)

reduces to

1
Q

pzrlw(CZ,D]) + Pzrz“’(CZ’Dz) 2

!
Q

PHTYR(C,,D ) + pIrJe(C,,D,) <

But this is impossible (viz. if 62 > =%, p, > 0 and the first line is
violated). So in this case a UMP unbiased test does not exist.

The other cases where (7) is violated are treated in a similar way.

Situation 2: uix : T(x) ¢ [c,,c,1} > 0.

plx @ T(x) ¢ [C,C, 0} > 0= vy : U(y) ¢ (@,,D,)} =0

= vy : U(y) ¢ [D],D2]} > 0= u{x : T(x) ¢ (CI’CZ)} =0. Now =1 a.e.

U x v except for {C]’CZ} X {DI’DZ}' In this case a UMP unbiased test is
possible (see counterexample 2). So extra conditions are required. For
instance Y or v absolutely continuous w.r.t. Lebesgue measure is sufficient.

Then @ = 1 a.e. Y x v, which contradicts a < 1.

Remark.

For discrete distributions counterexamples inthe sense of counterexample

2 can occur.
Problem 7.

Since, by the translation 6% = 9, - a, 68X =9 -b, the given testing problem
1 1 2 2

can be reduced to the equivalent problem
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H: GT <0, 6; < 0 against K : GT >0 or 9; > 0 or both,

we may assume a = b = 0 without loss of generality.

First assume that the natural parameter space {! is open. The power function

of any unbiased test ¢(x,y) satisfies, withR = (-=,0]

A

B(6,,6,) s a if (8,,0,) < Qn ® xR)

B(8,,6,) = o if (8,,6,) ¢ 2 n ® xR

These inequalities and the continuity of B(® ) (see Theorem 9, Chapter 2)

1’62
imply that 8(0,92) = o for all 92 : 62 e R and (0,0,) ¢ . Since, with
b] = inf {62 : (0,0,) ¢ Q) and b, = sup {62 : (0,8.) .9}, [ ¢eezydu is
analytic in (b],bz) and €(0,6.) = [ eezydu is analytic and unequal to zero
in (bl,bz); it follows that

B(0,6,) = a on (bl’bZ)

(see e.g. RUDIN (1970), Theorem 8.5).
Now an induction argument is employed to prove that

398(0,89)

= 0 for all 62 € (bl’bz) and all j € NN,
28d
1

Fix 8, ¢ (0,b,). Since B(0,6,) = o and B(6,,8.) =2 o for all 8,, B(0.,6,)
2 2 2 38(0,67) 12727 1 1772
has a minimum at 61 = (0. Hence 50 = 0 for all 62 € (O,bz). Again by

analiticity we get

3B(0,0,) _
——bel = 0 for 62 € (b],bz).
338(0,6
Assume __Ei_;_ll =0 for all j = 1,...,n-1.

267
1
For any fixed 92 € (bl’b2) and all 6] we have

o] 878(0,0,) n
) B8O = o+ o ——— + §n(6)),
861
with n(el) -+ 0 as 81 > 0.
Let n be odd. Since 8(61,92) > o for all 62 € (0,b2), we have
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_ Al
B(6,,8,) - a =6

1 97B(0,8,)
]<E—"——-6ﬁ~—— + n(el)) 20

7
: 1

The preceding inequality implies

n

lim (-%— 9 B8 | o 9 <0

| 3%8(0,6,) gt0\ D 961 1

299) _
Py Ry
38y (1 97B(0,8,)

1im o = + n(e]) =20
8,v0 n a6,

Hence, for all 62 € (O,bz),

978(0,0,) _
sen
1

(9) .
By analiticity (9) holds for all 62 € (b],bz).

Let n be even. For all 62 € (bl,O) we have 8(61,62) < o if 91 < 0 and
8(91,92) 2o if 9] > 0. Because n is even we obtain in view of (8), for all
62 € (bl,O)

3"B(0,8
(10) __Eég?_Zl =0

(by a similar argument as in the case n odd).

By analitiecity (10) holds for all 62 € (b],bz). Hence

86 ,,6,) = T o 20,0y 8(0,0,)
s = < T = s =a
1272 k=0 k! ae% 272
for all (6],92) €  or equivalently
e Q.

Eel,ez{¢(x,Y) - a} =0 for all (6,,6,)

Hence ¢(x,y) = o a.e. U by Theorem 1 of Chapter 4 (since Q is open and

hence it contains a 2~dimensional rectangle).

In a second part we drop the assumption that § is open, however we suppose
(0,0) ¢ int Q.

For all (6],92) e int § we have 8(6],62) = o, by the first part of the
proof. Now let (9?,68) e @\ int Q. Let ein = eg(l-n_l), n=1,2,...,

then (eln,92n) € int © as a convex combination of (0,0) € int Q and
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(90,82) € §l. Moreover, since exp (+) is a positive convex function,

exp (Slnx + 62ny) <1 + exp (e?x + Ogy) )
for all x,y ¢ R. The function 1 + exp (6?x4-93y) is integrable because
(0,0) ¢ Q and (eo,eg) ¢ §. Hence for each bounded, measurable function

¢ we have by the dominated convergence theorem

Lin [ §(x,y) exp (8; x+ 6, y)du = [ §(x,y) exp (6% + 6Jy)dy,

>0
implying B(69,69) = 1im (6, ,6, ) = o
*72 oo In’ "2n )
(LEHMANN (1952))
Problem 8.

Throughout we assume 90 € int £ (otherwise (ii) is incorrect).

(1) Let ¢0 be any level o test with B$O(90) = p. Without loss of
generality assume that ¢0 has size a.

Let 91 # 60 and consider the problem of maximizing EGI[W(X)], subject to
EeO[W(X)] = 0, and Bi(eo) = p. Since, by Theorem 9 of Chapter 2 and the
argument leading to (6) on p. 127,

B¢(90) = Eeo[T(X)w(X)] - EeO[T]Eeo[w(X)]

on equivalent formulation of the maximization problem is given by:

.

maximize Eg [Y(X)]

an !
subject to Eeo[w(x)] =0 and Eeo[T(x)w(x)] =0 + aEeo[T].

Define M = KE@O[W(X)], Eeo[T(X)W(X)]) : Y is a critical function}, which

is a convex set.

Now we shall prove that either it is possible to construct a test ¢ ¢ C

which has the same power as ¢O (we say for short that there exists aﬁ

"equivalent" test ¢ ¢ C) or (u,p*-uEeoT) is an inner point of M.

First suppose that for all critical functions {, with Eeo[w(x)] = 0,

Eeo[T(X)w(X)] < p+ aEeolT];
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then ¢0 maximizes Eeo[T(X)w(X)] among all critical functions of size o.
Then, by Theorem 5 (iv) of Chapter 3, there exists a constant k such that
a.e.

1 if T(x) > k

¢0(X) ={
0 if T(x) < k.

Hence an equivalent test ¢ exists in C. Similarly, if
Eeo[T(X)W(X)] 2 p o+ aEeO[T]

for all critical functions ¥ with EGO[W(X)]==u, we have that ¢0 minimizes
EG [T(X)P(X)] and again by Theorem 5 (iv) of Chapter 3, the existence of

an equlvalent test ¢ ¢ C follows.

The final possibility is the existence of size & critical functions w] and
¥, such that Egq W, &I > p + OB, [T] and Eg [wz(x)T(X)] <p+ aEeo[T].
Then, using the fact that M constains all points (u, uEe [T]) with 0 < <1,
it is easily seen that (a, pi—aEeo[T]) is an inner point of M.

Hence by Theorem 5 (ii,iv) of Chapter 3, there exist constants k, and k

1 2
and a test ¢, such that:

1 >
¢ ={ P ) k (x) +k,T(x) (%)
(x) . e](x . 1P8o x) 7T (X)pgq (x

is a solution of the maximization Problem (11).

An equivalent definition for ¢ is

1 <
¢(x) ={ a]+-azT(x) ebT(x) ,

0 >
which implies that the rejection region is the complement of an interval.
Indeed, a one-sided rejection region cannot occur, because this would imply
that ¢ maximizes or minimizes Ee [T(X)P(X)] subject to EQO[W(x)];(x by
Theorem 5 (ii) of Chapter 3, whlch contradicts (o, pi-aEe [T]) € int M.
Since.for some C],C2
Po, (x) > kypg  (x) + k,T(x)pg (x) & T(x) ¢ [C,C,],

Kl and EZ can be chosen such that
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pez(x) > E}peo(x) + EéT(x)peo(x)
® T(x) ¢ [c],C,]

@ pe](x) > klpeo(x) + sz(x)peo(x)

implying by Theorem 5 (ii) of Chapter 3 that ¢ also is a solution of (1)
with 61 replaced by 62. Therefore E [¢(X)] > E [¢0(X)] for all 0.

(ii) T is distributed according to the expomential family dP (t) =

C(B)e dv(t)

Let ¢,¢ e C, i.e. ¢ and 5 satisfy (3) and (5) of Section 2, with parameters
2,Y],Y2 and C CZ,Y],Y2 respectively. Without restriction we may

suppose that elther "C] < C]"or'@]'-cl and Y1<‘Y]"

Define W(t) = ¢(t) - &(t), J = {t : ¥(t) < 0} and T = {t : Y(t) > O}.

Then it is immediate that t < 02 for all t ¢ J. Also we have that t 2 C2

for all t ¢ I. This follows easily from the remark that ¢(t) = 1 if t < C

O(8) =y, s ¥, = §(t) if ¢, =T, = t and ¢(t) = 0 if C <t <C,.

Let © be such that 6 > 60 and define s = pG(CZ)/peo(CZ)' Then, since

]’

pe(t)/peo(t) is increasing with respect to t, we have pe(t)/peo(t) <
for t € J and pe(t)/peo(t) > g for t € I. Hence

J (-0)dpg < s f (-h)dg = s | Wdrg < [ yarg,
J : J I I
where the equality follows from the fact that
0 = dPy = dPy  + dP
J varg gweo {‘Peo

(¢ and § are size O tests).

First suppose that I (=)dape, = f WdPe, then
- J I

]

{T (=) (spg, = PglAV = { V(spg, - pgldv = 0.

This implies that —W(speo - pe) =0 a.e. on J and w(spe - pe) 0 a.e.
on I. Since Y # 0 on J and I and T is distributed accordlng to the
exponential family dP (t) C(e)e dv(t) it follows that e(e—eo)tis con-
stant a.e. on I U J. Hence V(I v J) = 0 which implies ¢ = ¢ a.e.
Secondly suppose that IJ (-lP)dPe < II dee or equivalently 0 < [ dee.

Then B¢(8) > 85(9). Similarly we prove that 8¢(6') < sa(e') for all
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8" < 60, unless ¢ = 5 a.e.

(i1i) Let c* denote the class of all two- or one-sided tests based on T(x):

i.e. the class of all tests of the form:

1 T(x) <€ or >,
d(x) = Y if T(x) = C;p i=1,2
0 €, < T(x) < ¢,

where -® < C1 < 02 < and 0 < Y],Yz < 1.
To prove (iii) we add the obvious condition Lo(eo) < Ll(GO).

For any two test (i.e. decision procedures) ¢ and ¢'
(12) R(6,¢') 'R(e3¢) = [Ll(e) - Lo(e)]'[8¢v(e) —B(b(e)]’

which follows by the proof of Theorem 3 in Chapter 3. Let ¢ be any test
and let o = Ee ¢. By (i) there exists a test ¢' ¢ c* with Ee ¢' = o such
that B¢,(9) B¢(9) 0 for all 6. Hence, if L (9) L (9) for all 6 # 6
we have R(8,¢') =< R(6,9) for all 9. Hence c* is essentially complete.

0

To prove that c* is minimal, let ¢o € and define C' =

[\ {¢ € c* ¢ = ¢0 a.e.}.

Let 0y = Eg ¢0 Part (ii) ensures that for any ¢ ¢ C' with Ee o' =
parameters 9],62, both # 80, exist, such that

%

(13) Bp(8)) > By (8)) and By(8,) < By (8,)

If L](e) < LO(G) for all 6 # 60, (12) and (13) imply that no test ¢ ¢ C',
with Ee ¢ = ao, exists such that R(0,$) < R(6, ¢0) for all 6. For any
$eCr, w1th Ee ¢ > Oy, we have (by the additional assumption) R(60,¢) >
R(90,¢0) For any ¢ e C', with Eg ¢ < Oys we have, by continuity of the
power function, R(8,¢) > R(6,¢0) for 6-—60 sufficiently small, but un-

equal to zero.

(iv) 'In this part we extend (iii) to the problem of testing H': 8¢ [61,62]
against the alternative K' : 6 ¢ [61,92]. As in (iii) the problem is con-
sidered as a two-decision problem with decisions d0 and_d] corresponding
to acceptance and rejection of H' and with loss function L(G,di) = Li(e),
i=0,l1.

For this two-decision problem, the following results hold:
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(14) if L](e) - L0(9) 2 0 for all 9 ¢ [6],62] and
L (8) = 1y(8) < 0 for all 6 ¢ [68,,6,],
then the class C” is essentially complete.

IA

(15) if Ll(e) - Lo(e) >0 for all 8 ¢ [e ,0 ] and
Li(8) - Ly(8) < 0 for all 0 ¢ [e], 2]

* . 3
then the class €' is minimal essentially complete.

Proof of (14). Take an arbitrary test ¢ and define o = Ee [¢ (x)] and
B = E62[¢0(X)] Given ¢0 and a test ¢ ¢ C* the difference between the

risk functions satisfies
R(8,9) - R(9,¢0) = [L](e) - L0(9)1[8¢(6) - B¢0(6)]

by the proof of Theorem 3 of Chapter 3. ﬁence, under condition (14), the
inequality R(8,9) < R(e,¢0) holds for all 9 and some ¢ € c* (i.e. C* is
essentially complete) if we can prove that either there exists an equi-

* . %
valent test ¢ € C' or there exists a test ¢ ¢ C such that

Eglo(X)] 2 Eglo (X)]  for a11 © ¢ [6
Eglo(x)]
E91[¢(X)] =a, Eg [o(0)] =

1%,]
Eglog (0]  for all 6 ¢ 16,0,

A

First suppose that for all critical functions ¢, satisfying Ee [o(x)] =

1-a, Ee [¢(x)] < 1-B. Then 1-¢0 is a level (1-0) test, whlch is most
powerful for the testing problem H : 6 = 9 against K : 6 = 9 . Hence
from the Neyman-Pearson fundamental lemma 1-¢0 ( and hence ¢0) is a.e.
one-sided. This implies that there exists ¢ ¢ c* » which is equivalent

to ¢0 Similarly if for all critical functions ¢, satisfying Ee [¢(X)]
1-a, Eg, [p(x)I>1-8

Since the two preceding arguments can be repeated with the roles of o and
B interchanged, it remains to consider as a final case the situation where
(1-0,1-B) is an inner point of M = {(Ee]w,EGZW) : Y a critical function}.

Let 8 be any value between 61 and 62 and consider the maximization problem:

maximize E. [¢(X)]
(16) ®
subject to E61[¢(X)] = 1-a and E62[¢(X)] = |-B.



98

Then, by Theorem 5 (ii,iv) of Chapter 3, there exist constants kl and k2

*
and a test ¢ , such that

1 >
6% (%) ={:0 Py (%) . klpel(X) + kzpez(x)

is the solution of the maximization problem (16).
Just as in (i) it is seen that ¢* is also a solution of (16) with 6 re-
placed by 8« (61,82). Hence Ee[(l-¢*)(X)] < Ee[¢0(x)] for all 6 ¢ (GI,GZL

Now let 8' be a value of the parameter less then 6 . Since for some C],C2

Pg(x) < klpel(X) + kzpez(X)

@ TR § [€;,8,) @ pgy () > K pg () + Typg. (%)

for some ﬁ i H ¢ maximizes Ee,[¢(X)] subject to EG [¢(X)] = & and
E62[¢(X)] B by Theorem 5 (ii) of Chapter 3. Therefore E [(1- ¢ YX)] =
Ee[¢O(X)] for all 6 < 61

Repeating once more the preceding arguments for a value of the parameter
0 greater then 92, we end up with the conclusion that the test 1-¢* has

the desired properties.

Proof of (15). Let ¢0 ¢ C* and define C' = C\{deC:¢ = ¢O a.e.l.
Suppose (' is essentially complete. Then a test ¢ ¢ C' exists such that
R($,0) - R(¢0,6) < 0 for all 6. Hence, by the assumptions in (15), it
follows that B 9 - B¢ (6) £ 0 for all 8 ¢ [6 ,0 ] and B¢(9) B¢0(9) >0
for all 6 ¢ [91,9 1. Now, the continuity of B¢— B¢, (by Theorem 9, Chap-

ter 2) implies that:

a7 B¢(91) = B¢0(6]) = a say
and -
5¢(92) = B¢o(92) = B say.

(18)

From (17) it follows that ¢ and ¢0 belong to the class C as defined in
(i) (with 90 replaced by 6 ) Further, from the proof of (ii), it follows
that B¢(9 ) # B¢ (e ) whlch contradicts (18). Hence the reduced class C'

is no more essentlally complete, or equivalently C is minimal.

(LEHMANN (1947); FERGUSON (1967) pp. 217-223)
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Section 3
Problem 9.

Let Xl""’xn be a sample from
(i) the normal distribution N(aG,OZ), with a fixed and 0 < 0 < «
(ii) the uniform distribution R(6-4,6+}), -© < § < »

(iii) the uniform distribution R(G],ez), ~© < 6] < 62 < ©

then the joint density of Xl""’Xn is given by

) ( ; 1 1 g {1(}(1-80)2}
i PAX yeeeyx ) = — exp - %
071 n (21r)n72 ot i=1 2 G
2
¥ x5
_ 1 1 _1 i_,a 2\ _ 2
= ?2’”—)1_17—2‘ —O—nexp { 7(-(;2—' ZOin+na >}—g0<2xi,):xi)
1 if 6-} < K seeesX < B+
- _ n
(ii) pe(xl,...,xn) -{

0 otherwise

{ 1 if 6-4 < min (xl,..,xn) < max (xl,..,xn)<6+%
0 otherwise
= ge(min (xl,...,xn), max (xl,...,xn))
-n , .
. (62 6]) if B] <min (xl,..,xn) < max (xl,..,xn) < 62
(iii) pg g (xl""xn)“
1272 ‘ 0 otherwise

ge1 ’ez(min (x] e ’Xn) ,Mmax (x1 see ,xn)).

Hence

(i) (z Xi’ b2 Xi) is sufficient for N(aG,OZ)

(ii) (min (Xl""xn) ,Max (Xl,..,Xn)) is sufficient for R(e-;§,6+%)
(iii) (min (X],..,Xn),max (X],..,Xn)) is sufficient for R(el,ez)

by the factorization theorem.

Let PT be the family of distributions of T = (TI’TZ) = (X Xi,}: Xi), where
Xl""’xn is a sample from N(ao,oz).

Since
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P{zx,/ \/zxf < x} = P{ZXi/O)(\/Z(Xi /0)2 < x}

= plrz,/ Vs Z% < x},

where Z],...

’Zn are independent N(a,1) distributed random variables, the

distribution of )in / VX X% does not depend on O.

Define

f(t],t
0

2
Then Eo[f(): X;,Z xi)]

t //E;— E[zxi/\/ZX%] if (¢ /|/t2')2 and t
> <
2

270

otherwise

0 for all 0 > 0 and £ # 0, hence the family P is

not complete. Since the function f is bounded, it also follows that PT

is not boundedly complete.

Let PT be the family of distributions of T = (TI’TZ) =

(min (X1 yooo ,Xn), max (X1 so e
form distribution R(6-4,6+}).
It is easily seen that Ee[min(X],...,Xn)]
- i -
X)L = g (62D

Hence we have for all 6 that Ee max(Xl,..

Ee[max (x],..

.,Xn)) where Xl’

"Xn) -min (Xl""

...,Xn is a sample from the uni-

1
= =7t (6-4) and

n+l
Since
6yt - 2:% 10 <t <ty < g+l
£(t,t,) ={ o
0 otherwise

is a bounded function and Eef(Tl’TZ

) = 0 for all -» < § < o, it follows

that the family PT is neither complete nor boundedly complete.

Finally, let PT denote the family of distributions of T = (TI’TZ) =

(min(Xl,...,Xn),max(Xl,...,Xn)), where X

127"

.,X_is a sample from the
n

uniform distribution R(el,ez). From the distribution theory of order

statistics it follows that the density of T is given by

n(n—l)(t:z—t])n_2

- n

Suppose that for all (91,62), with 61 <9

2’

<t

1fel<t] 2<92

otherwise,
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j f(tl,t ) (ty)- dt dt, = 0

DY D
N

Let f(t],tz) = £t (tl’tZ)_ f_(t],tz) where £' and £~ denote the positive

and negative parts of f respectively. Then for all Borel sets A of X

Vi@ = Jf e e (-t YR 2de. d
A 1’72 2 71 1772
and

- - n-2
v (4) = {{ f (t],tz)(tz—t]) dtldtz

are two measures over the Borel sets on X = {(xl,xz) P ¥ < xz} C]Rz,

oty s 8y s t] St,30,<t,<8, }
Since these triangles generate the Borel sets of X, v (A) = v (A) for all

which agree for all triangles Ae 9 = {(t

Borel sets A of X. This implies £ (tl’tz) = f (tl’t2) on X except

possibly on a set of Lebesgue measure zero and hence f(t],tz) = T

Problem 10.

Let Xl,...,Xm and Y],. Y be independent samples from N(§,o ) and

N(E,TZ). The statistic T = (ZX ZYJ ZXZ ZY ) is sufficient but not
complete (Example 5). Here it w111 be shown that T is also not boundedly
complete,
Let
t t
1 if =2--15>9
n m
£(t),t,,ty,t,) = .
-1 if 2--1 <o,
n m
Then

Bip 2,02y [E(D] = Ecg’OZ,Tz)[f(ZXi,ZYj,in,

2
ZYj)]

P Y-X 2 - P Y-X<0}=14-1%=o0.
(€,02,12) 1T "X 20} = By 2 0 b
Problem 11.

First suppose that f is an arbitrary bounded (measurable) function and
that for all ©

0 = Bgl£(0] = £(-18 + T £(x) (1-6) 207
x=0

7, w
ot

101

0 a.e. P
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(o]

= £(0) + £ (£(x-2)~2£(x-1)+ £(x))6%.
x=1

The above power series in O converges absolutely for every interior point
6 of the unit circle (f is bounded), so all the coefficients of the power
series are equal to zero.
Hence £(0) = 0 and f(x)-2f(x-1)+ £(x~2) = 0 for x = 1,2,.
By induction it follows that £(x) = -xf(-1) for x = 0,1,2,...
But, since f is bounded, we conclude that f(x) Z 0 a.e. P. To show that
P is not complete, consider the function %(x) = X.
For 0 < 6 < 1

EJLE®)] = -0 + 01-0)" & x0*7!
x=0
= -6+ 01-0)" £ L 6%
x=0
= -6+ 8(1-0)° & 1o = 0

Hence P is not complete.
(GIRSHICK, MOSTELLER and SAVAGE (1946))
Problem 12.

Given P = {P} a family of distributions with the property that for any
P,Q ¢ P there exists a 0 < p < 1 such that pP + (1-p)Q ¢ P; it can
easily be shown by induction over m that for any P,Q ¢ P there exists

Opslysees satisfying 1 > 0y >0y > e > 0 such that
amP + (l—am)Q e P form=1,2,... .
Then for any n, P,Q € P and h satisfying
(19) f h(x],...,xn)dﬁ(xl)...dﬁ(xn) =0 forallBeP

it holds for m = 1,2,... that

n
(20) 0= LIPS k1=11 dla P(x ) + (1-0, )Q(x,) ]
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. _
= [ h(xpseeax) kzl lo dP(x ) + (1-a )dQ(x,)]

2 (n) k n-k . (n)
I (2) okr-o™ 3 2,0,1)

. aD n (n) ( Oy \K (n)
(1 Otm) k:-l:o k ]—Otm> Jk (P9Q’h)

by Fubini's theorem and symmetry of h; where for 0 < k < n

Jén)(P,Q,h)= S Gy, yx )aR () - 4P () dQ(x, , )2 Q) ©

Note that by (19), (20) and Fubini's theorem Jén)(P,Q,h) is well defined.
Since in (20) we end up with a polynomial with an infinite number of zeros
T%g;’ m=1,2,...) all the coefficients must by zero (éee also Example 3).
Hence Jﬁn)(P,Q,h) =0 for k = 0,1,...,n.

Now, using the preceding result, we will prove for n = 1,2,...

(21) for any h satisfying (1)
f h(xl,...,xn)dP](x])...dPn(xn) = 0 for each n-tuple
) (Pl""’Pn) e P.

The proof is by induction over n. For n = | it is trivial. Suppose that
(21) is true for some n. Consider any h satisfying (19) (with n replaced
by n+1) and any Pl"}"Pn+] e P.

For all P ¢ P

(n+1)
1 n+l1?

f h(xl,...

J (P_.,,P,h) =

$X R L G ARGy L LdP(x ) = 0.

From Fubini's theorem and symmetry of h it follows that

fh*(xl,...,xn)dP(x])...dP(xn) =0
where

* -
LA G N f LICTPRPRIE SUOOL I S C NP

Hence by the induction argument
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f h(xl""’xn+l)dPl(xl)"'dPn(xn)dP (x .,) =0,

n+l “n+l

(FRASER (1953); WALSH (1949))
Problem 13.

The distributions in P are continuous. By the remarks on p. 48 and Example
7 of Chapter 2, it follows that T is sufficient for P.

Suppose EQ[h(T)] = 0 for all Q ¢ PY. Remark that EQ[h(T)] = 0 for all

Q ¢ PT implies EP[h(T(X))] = 0 for all P ¢ P by Lemma 2 of Chapter 2.
Since h(T(Xl""’Xn)) is a symmetric function and since (by independence)
for all P ¢ P

Eplh(T(x))] = [ B(T(x,...,x ))dR(x)). .. d?(xn) =0,
Problem 12 implies
(22) | B(T(Gx 5o en,x ))dP (%)) dP (x ) = 0

for each n-tuple (Pl”°"Pn) e P,
Let B]""’Bn be n finite intervals and let Pl""’Pn be the uniform

distributions over these intervals. They can be written as
dPi(x) = ciIBi(x)dk(x), i=1,...,n

where A is the Lebesgue measure.

Hence

(23) i h(T(x,5...,%x ))dA(x,)...dA(x ) = 0.
1 n 1 n
B.x...xB
1 n
Let h' and b~ denote the positive and negative parts of h respectively.

Then

v (a)

i h*(T(xl,...,xn))dA(x])...dx(xn)

v (4) i h—(T(x],...,xn))dk(xl)...dk(xn)

n
are two measures over the Borel sets A ¢ B'.



Since by (23) it follows that v+(B] X .. X Bn) - \)_(B1 X .. X Bn) =0
for each n-dimensional bounded rectangle B] X .. X Bn € Bn, the measures
V+ and Vv agree on bounded rectangles and hence for all A « B". This
implies h+(T(xl,...,xn)) = h_(T(xl,...,xn)) a.e. A\. Therefore
h(T(x],...,xn)) =0 a.e. A",

Let B = {t : h(t) # 0}. Then

Q) = PHT (B} = PM{{(x,,. 0% ) t (T(x .0 ,x)) #0}) = O,

1’

R . . n
because P" is absolutely contiuous with respect to A",

Hence h(t) = 0 a.e. PT.

(FRASER (1953))
Section 4

Problem 14.

With C] = v and 02 = w, the determining equations for VW, Y, and Y, are:
(24) F (v=) + 1=F (@) + 7, [F, (v) - F (v) ]+ Y, [F (1) ~F )] = o
and
(25) G (v=)+1- G (W) +Y, [Gt(V) - Gt(v-)] + Yz[Gt(W) - Gt(w-)] =0
where
(26) Fw = fc e ay ()

t ROt L e

u )
6 = o e Pav, )

denote the conditional cumulative distribution function of U given t when
0 = 91 and 6 = 92 respectively. Note that in view of Lemma 8, Chapter 2
these distributions are independent of 61,...,6k.

For each y ¢ [0,a] let

v(y,t) = inf {u : F (u) 2 v}

105
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and
w(y,t) = inf {u : F_(u) = 1-0+y},

where inf ¢ = o,

Define Yl(y,t) and Yz(y,t) so that for v = v(y,t) and w = w(y,t)

(27) F (v-) + YllFt(V),- Ft(v—)] =y
and
(28) 1-F (w) + Y,[F (w) - F (w-)] = a-y

and such that Yy o= 0 and Y, = 0, respectively, if Ft(v) = Ft(v—) and
Ft(w) = Ft(w—), respectively.

Let H(y,t) denote the left hand-side of (25) with v = v(y,t) etc.

By Theorem 1 (ii) of Chapter 3 and (28) it follows that the test

1 >
B,u 6,u
¢.(u) =1 v,(0,t) when C_(8,)e 2 = k(0,£)C (8 Je !
0 <
or, equivalently,
1 >
¢t(u) = Yz(O,t) when u = w(0,t)
0 <

is most powerful at level o for testing Ft against Gt' Hence by Corollary
1 on p. 67 it holds that H(O,t) > a.
Now let o* = H(o,t). As in the previous case it follows by Theorem 1 (ii)

of Chapter 3 that the test

1 <
¢:(U) = Yl(a,t) when u = v(o,t)
0 >

is most powerful at level o for testing Gt against Ft’ Hence (27) and

*

Corollary 1 on p. 67 imply that H(o,t) = a* < q.

Define H](y,t) and Hz(y,t) by



107

By (y,t) = G.(v-) + v,[6,(v) - 6, (v)]

and
Hy(y,t) = 1 = G (w) + v,l6 (W) - G (w1,

where v = v(y,t) etc.

We shall prove that, for fixed t, Hl(y,t) is a continuous function of y.
Since Gt(x—) as a function of x is left continuous and since v(y,t) as a
function of y is left continuous and nondecreasing, Gt(v(y,t)—) is left
continuous. The left-continuity of Ft(v(y,t)—) can be shown in the same
way and hence Y](y,t)[Ft(v(y,t)) - Ft(v(y,t)-)] is left continuous, since
by (27) it is the difference of two left continuous fumctionms. Finally,

since

(29) G (v(y,t)) - G (v(y,t)-) =

C.(8,)  (8,-087)v(y,t)
A 270V, _ _
= 75;(6:3— e [Ft(V(y’t)) Ft(V(Y,t) )]

the proof of the left-continuity of H](y,t) is complete. As to the proof
of the right-continuity, we remark that for v(y,t) we always have one of
the following three situations:

(a) There exists a § > 0 such that v(y,t) = v(y+6,t)

Then Ft(v(y,t)—) <y < y+d < Ft(v(y,t)). Hence from (29) we get

(30) G (v(y,t)-) < G (v(y,t)).
Further remark that (ecf. (27)) for h < §
Iy, +h,t) = v, (7,0 IF (v(y,t)) - F (v(y,0))] = b5
and since Ft(v(y,t)—) < Ft(v(y,t)) it follows that
(31) Lim v, (y+h,t) = v,(y,t).

h{0

Finally, since for h < §, the difference Hl(y+h,t) - Hl(y,t) reduces to

[y, (7, ) = ¥, (7,016, (v(y,8)) = G, (v(y,£)-)]
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the right-continuity (i.e. %%g Hl(y+h,t) = Hl(y,t))follows from (30) and
3.
(b) v(y,t) € v(y+,t) < v(y+S,t) for all § > 0. In this case

limsup [Gt(v(y+h,t)) - Gt(V(y+h,t)”)] =0,
ht0

because otherwise Gt has infinitely many jumps 2 € > 0, which is impossible.

Therefore
lim [H (y+h,t) - H,(y,t)]
h¥0

lim G _(v(y+h,t)) - ¢, (v(y,0)-) -
hi0

Y] (y’t)[Gt(V(y’t)) - Gt(V(Y9t)_)]

(1 - Y, (v, 16 (vy,t) - G, (v(y,t)-)].

If Gt(v(y,t)) > Gt(v(y,t)—), then by (29) also Ft(v(y,t)) > Ft(v(y,t)—);
moreover Ft(v(y,t)) = y and hence by (27) it follows that Yl(y,t) = 1.

(c) There exists a § > 0 such that v(y,t) < v(y+,t) = v(y+8,t). For h < §
we have F (v(y+h,t)) = F (v(y+,t)) > F (v(y,t)) = F (v(y+h,t)-) =y and
hence, by (27), iig Yl(y+h,t) = Ot Therefore (cf. (b))

Lim H, (y+h,t) - B, (7,8) = [1 -7, (7,) 1[¢_ (v(y,t)) - 6, (v(y,£)-) ] = 0.
h¥0

Similarly one can show that Hz(y,t) is both left— and right-continuous. To

make the analogy with the previous case (Hl(y,t)) clear, it has to be

noted that '

1=Hy(7,8) = G, (=) + (1-7,)[€, (W) - 6, (w-)]
and that (28) is equivalent with
Ft(w—) + (]—Yz)[Ft(w) - Ft(w—)] = l-a+y

where w = w(y,t) etc.

Consequently H(y,t) = H](y,t) + Hz(y,t) is a continuous function of y for
fixed t.

It follows that H(y,t) 2= c¢ if and only if for each n there exists a

rational number r such that y--n_1 <r«< y+n“1 and H(r,t) > c-n_].
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Therefore if the rationals are denoted by TisToyeee

(32) {(y,t) : H(y,t) 2c} =N U {(y,t) : e -y < " SH(r,,t) > "
ni

Since v(y,t) < uey < Ft(u) and w(y,t) £ u e I-g+y < Ft(u) and since

Ft(u) = Eel{I{USu,TﬂR}lT:=t} is a measurable function of t for each fixed

u, v(y,t) and w(y,t) are measurable functions of t for each fixed y.

Moreover Y, and Y, are measurable functions of t for each fixed y by (27)

and (28). Hence H(ri,t) is measurable in t for each i. Now formula (32)

shows that H(y,t) is jointly measurable in y and t. Define
y(t) = inf {y : H(y,t) < al}.

Note that H(0,t) > o > H(a,t) and that H(y,t) is a continuous function of
y for fixed t. Then (24) is satisfied with v = v(y(t),t) etc. By the
definitions of v and w and by (27) and (28), (25) is satisfied, since
H(y(t),t) = 0o, The measurability of Cl(t) = v(y(t),t), Cz(t) = w(y(t),t),
Y](t) = Yl(y(t),t) and Yz(t) = Yz(y(t),t) now follows from the following

relations, which hold for all real c,
{t : y(t) <ec} = U {t : H(r,t) < a}
r<c

where r denotes a rational number,

{t:vy(r),t)<scl={t:y(t) < Ft(c)} ={t:y(t) -Ft(c) <0},

{t:wly(t),t) <cl={t: 1-a+y(t) < Ft(c)} ={t:y(t)- F (c)< o-1}

and from (27) and (28), the defining equations of Yl(t) and Yz(t)' Hence
the function ¢3 defined in Section 4.4 by (16) and (17) in the sense as

indicated above is jointly measurable in u and t.
Problem 15.

The solution of this problem is essentially the same as that outlined in
the preceding problem. Therefore the comments upon the different steps in
the solution as well as the references to the text are reduced to a
minimum,

With C] = v and 02 = w, the determining equations for v, w, Y, and Y, are:
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(33) F () +1-F () +v[F (V) -F (v-)]1+ Y lF o) -F ()] =a

and

(34) f udF  (u) + f udF (u) + Y, v[F (v) - F (vo)]+ YoulF (w) - F, (w-)]
u<y u>w

= uJ'udFt(u).

Since Ft(u) belongs to an exponential family | |u|dFt(u) < ® (gsee
Theorem 9, Chapter 2).
For each y ¢ [0,a] let

v

v(y,t) = inf {u : F,(u) y}

and

w(y,t) inf {u : Ft(u) > 1-o+y},

where inf ¢ = o,

Define Yl(y,t) and Yz(y,t) so that for v = v(y,t) and w = w(y,t)

(35) F (v-) + Y][Ft(V) - Ft(v-)] =y,

(36) 1 - Ft(w) + Yz[Ft(w) - Ft(w-)] = o~y

and such that Yy = 0 if Ft(v) = Ft(v—) and Y, =0 if

Ft(w) = Ft(w-).

Let H(y,t) denote the left-hand side of (34) with v = v(y,t) etc.
Since v(0,t) = -~ and F(w(a,t)) = 1, it follows from Problem 3.18 that

H(0,t) = udF, (@) +7,(0,£)w(0,t)[F_(w(0,t) - F, (w(0,t)-)]
ww(0,t)

>a f udF ()

and that H(o,t) < aJ'udFt(u).
Define Hl(y,t) and Hz(y,t) by

H (y,0)= | udF () +v, (v,6)v(y,0)[F _(v(y,8)) - F (v(y,8)-)],
u<v(y,t)

and
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H (Y,t)= I udfF_(u) +7Y (Y,C)W(Yat)[F (W(Y,t))“'F (W(y’t)_)]~
2 t 2 t t
ww(y,t)
We shall prove that, for t fixed, Hl(y,t) is a continuous function of y.
Since both Iu<x udFt(u) as a function of x and v(y,t) as a function of y

are left-continuous and v(y,t) is non-decreasing, { udFt(u) is

u<v(y,t)
left-continuous. Furthermore the left-continuity of Ft(x—) implies the
left~continuity of Ft(v(y,t)—), and in view of (35) the same is true for
Y](y,t)[Ft(v(y,t)) - Ft(v(y,t)—)], and therefore also for Hl(y,t).

To prove that Hl(y,t) is right-continuous, we consider three cases:

(a) There exists a § > 0 such that v(y,t) = v(y+,t).

Then Ft(v(y,t)—) Sy < y+h < Ft(v(y,t)) and

lim Hl(y+h9t) - Hl(y’t) =
h¥0

tim [y (y+h,t) =Y, (7, ) Iv(y, ) [F (v(y,t)) - F (v(y,0)-)] = 0
h¥0

since in this case 1im Yl(y+h,t) = Yl(y,t).

() v(y,t) < v(y+h,t) < v(y+8,t) for all § > 0. In this case

limsup [Ft(v(y+h,t)) - Ft(v(y+h,t)—)] = (0, because otherwise Ft has

h{0
infinitely many jumps = € > 0, which is impossible. Therefore

lim H (y+h,t) - H (y,t) =
hv0

lim f udF (u)
h¥0 [v(y,t),v(y+h,t))

- Y, 0,0, 0)[F (viy,t)) - F (v(y,0))].
Since Ft(v(y+,t)—) -~ Ft(v(y,t)) =0

lim H](Y+h,t) - HI(Y:t) =
h{0

= (1"Yl(y,t))V(y,t)[Ft(V(Y,t)) - Ft(V(y,t)')]-

Because Y](y,t) =1 if Ft(v(y,t)) > Ft(v(y,t)—), it follows that also in
this case Hl(y,t) is right-continuous.

(c) There exists a 6 > 0 such that v(y,t) < v(y+,t) = v(y+§,t).

Then %i% Y](y+h,t) = 0, and we can argue as in (b) to obtain the right-

continuity of H](y,t).



112

Since v(y,t) always satisfies one of the three cases (a), (b) or (c),
the continuity of H](y,t) follows.
Next it has to be noted that

+00

_jm udF (u) - Hy(y,t)

= J udFt(u)+-(I—Yz(y,t))W(y,t)[Ft(w(y,t))-Ft(w(y,t)-)]
u<w(y,t)

and that (36) is equivalent to
Ft(w(y,t)—)'*(l—Yz(Y,t))[Ft(W(y,t)) —Ft(w(y,t)-)] = I-oty.

Comparison of these equations with (35) and the definition of H]’ shows
that the same arguments as in the proof of the continuity of Hl(y,t)
apply, yielding the continuity of Hz(y,t) as a function of y for fixed t.
Just as in Problem 14 it now follows that H(y,t) is jointly measurable in
y and t. Define y(t) =inf {y : H(y,t) < ocfudFt(u)}, and let v(t) =v(y(t),t)
etc. Then (33) and (34) are satisfied for all t. Furthermore as in
Problem 14 y(t), v(t) and w(t) are measurable, and in view of (35) and
(36) Yl(t) and Yz(t) are measurable. Finally the argument of the hint
shows that JC—“,Z) udFt(u) is measurable in z and t. Hence the function

¢4 defined in Section 4.4 by (16), (18) and (19) in the sense as indicated

above is jointly measurable in u and t.
Problem 16.

Let ¢i(u,t), i=1,...,4 be the UMP unbiased tests of the hypotheses
H],...,H4 of Theorem 3. Suppose ¢;(u,t) is another UMP unbiased test
of Hi’ i=1,...,4. Then

* -
E6,0[¢i(U’T) - ¢i(U’T)] =0 for all (8,%) ¢ K.
The parameter space { is convex and it has dimension k+l. Moreover, there
are points in Q with © < as well as points in § with 6 > 60,6] and 62

respectively, implying that the family

= (pUpT |
Pi = {Pe’a : (8,9) € Ki}
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is complete.. Hence ¢;(u,t) = ¢i(u,t) a.e, Pi or equivalently

¢;(u,t) = ¢i(u,t) a.e. V.
Section 5
Problem 17.

As indicated in the hint, the power of the UMP unbiased test under con-

sideration is given by

B = Z B(t) (>\+U) "O\*‘U)
t=0

where B(t) is the power of the conditional test given t against the
alternative in question,

Remark that, since 0 < B(t) <1, t=0,1,2,..., we have for each T ¢ N

T
18 R . D <A+u> —(A+u>|
t=0
- ’ T e’ (x+u> —(A+u>}
t=T+1
oo t
< ¥ (X:g) o~ (A1)
t=T+1 .

Hence the truncation error in B is bounded by a Poisson tail probability.

For each (A,u) T is chosen large enough to ensure the truncation error to

be less that 10 °.
The results are summarized in the following table (0. = .1)
(1Y) B
(.1,.2) .110
(1,2) .217
(10 , 20) .710
(.1, .4) .135

These results illustrate the discussion on p. 142, concerning the ratio
o = % as a measure of the extent to which the two Poisson populations

differ (the first three (A,u) have the same ratio).
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Problem 18,

Consider two (independent) sequences of binomial trials X
Y

1”"’Xn and
s»++>Y with probabilities of success p, and p, respectively and let
1 m P 1 2

_P2 9

n m
(q. = 1-p,, i=1,2), X= £ X. and Y= I Y..
Pp 9y % t i=1 * i=

(i) Let ¢(X],...,Xn,Y
against K : p = p

1""’Ym) be a level a test for testing H : p = pO

r For each P;sP, satisfying 0 = o
a > Ep]’p2¢(X1,...,X ) S

= ¢(O,...,O)P{X4-Y=(H‘+EP1’P2[¢(X1,...,Xn,Y

Y )

1’

$(0,...,0)q]q) + £(p,,p,)

. < < ,_.nn . q; _
with O f(pl,pz) <1 9,4, (we write Ppl’pZ as P). Since Pl T Pgs
under the hypothesis, P, 0 inplies Py, 0, and hence ¢$(0,...,0) < a.
Analogously for each PPy satisfying pl = %%—%% we have

B(py»py) = LI STERERS S0 STRTEN M

n
¢(0,---,0)q?q2 + £(p;»py).

Now let P, 0 then B(Pl’pZ) + ¢$(0,...,0) £ 0 and hence no test ¢ exists
which has power = B > o against all alternatives PysPy with p = Py-

(ii) Let M| M,,M,,...
XM # YM and let €15€y,E

denote the consecutive indices M for which

grece € {0,1}. Then

P{XM] =€ 00k = ek} =

1 k

[e0] ©0 [oe]

El E o z +]P{XM]=€1,...,XMk=€k,M]=m1,..;,Mk=mk}=
m;=1 my=m, =Ty

(o] [=o] feo]

-El f o E +1P{Xm1=€1’°"’ka €My 5. .M = b=
my mz—m] m mk_]

00 [+ o m

r oz e I (pyP,* 444,) . P{Xm =€,,Yy =l-¢}:
m1=1 m2=m1+] =mk 1+l

. ™M = =1-
(pypy+9q,9,) P{Xm =€y ¥p,=1-€,}. ..

—
.(p]p24.q]q2)mk Te-1 P{xmk=gk,ymk=1_€k} =
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ﬁ P{x =€;,Y,#X, } k
i=1 = 1 P{X1=ei]X1#Yl}
(1-(p]p2+q1q2)) i=

where (X,Y) has the same distribution as (Xi’Yi)’ i=1,2,... . By summation
over all €p» L=1,...,i-1,i+1,...,k it follows that XM]’XMZ"" are
independent with distribution

P14y 1

P{Xy.=1}=1-P{X,, =0}= =
M; Mi P9, * Py, 1+p

Now we restrict attention to foXMf . . Experimentation is continued until
N (N being a given integer) such pairs are available. From the preceding

it follows that XM1 + ...+ XMN is B(N,——) distributed. Testing H : p = po

>
against K : p = P is therefore equivallgg to the testing problem
H:p= P against K : p = P, for a binomial distribution. For this
situation tests of arbitrary high power can be obtained by choosing N
large enough.

(iii) is immediate by Example 9, Chapter 3, since XM]’XMZ"" are

independent random variables (see (ii)).
(WALD (1947))

Section 6
Problem 19.

(i) By stationarity we have

=
(]

P{Xl= 1} = P{Xi= 1}

—

= kzo PX,  =kIP{X;=1]X,_ =k} = (1-m)py+mp

Hence

T =P/ (pgtay)

Mo = 1-mp = a;/ (pgtqp).

(ii) Let P(xl,...,xN) denote the probability of any particular sequence

of outcomes (xl,...,xN), then we have to prove that
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-1 v n-v -~
(37) P(x),..0oxg) = (Py+a;) Pgpy 439

where m and n denote the number of zeros and ones and u and v the number
of runs of zeros and ones in the sequence (xl,...,xN). The proof is by
induction over N. For N = 1 it follows immediately by (i). Now suppose
that (37) Holds for N, and consider the sequence (XI’XZ""’XN+1)' Then

the following four cases can occur.

@ g =1 gy <

P(xysee Xy p»1,1) = P{xg, =1 ] C PP I 0 JC PN S D

_ -1 v _(n—-1)-v u m—u

The cases

®) T 1 N+1 0
() %y =0, Xypp =)
(@) = 0, X1 T 0

are treated similarly.

(DAVID (1947))
Problem 20.

(1) The most powerful similar test.

6 < pT be a fixed alternative. Consider the testing problem H : p = Py
against K* @ p* < p*. Under H, independence of the sequence X,,...,%X.,
0 1 1

Let p

we have that
log 0
_ _ e N-m m _ N ®mlog—py
PPO’PO{Xl = Kl s ,XN_ XN} po (1 pO) poe
where m is the value of the random variable M, denoting the number of

zeros. Hence M is a sufficient statistic for

X senesXy

P 1 0 < < 1.
(Pospo) Po }

Moreover M is complete by Example 3 p. 131. Sufficiency and completeness
of M under H, together with an application of Theorem 2 p. 134 make the

following equivalences immediate:
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a test ¢ is similar
@
= < <
Epo’pow(xl,...,XN) o for all O P 1
(=4
EPO pOE{w(Xl,...,XN) | M} = a for all 0 < Py < !

E{w(Xl,...,XN) IM} =a a.e.

So conditionally on M a simple hypothesis has to be tested against a

simple alternative. Therefore, a test

1 >
0 (u,v,m) = { v* if P(p p*){x =X ppe e e Xy xNIMm} kP {X =x, XN"xN|M—-m}
0 <
or, equivalently,
1 >
©*(u,vom) = 4 ¥* if (pf+q)) “Iop'p ,;n—vq,;uq;m—u =k
0 <
or, equivalently, with A(u,v) = (pS/ pT)V(qT/ qa)u
1 >
¢ (u,v,m) =4 y* if ACu,v) =k
0 <

where Y* = Y*(PS’PT’m) e [0,1) and k* = k*(ps,pT,m) satisfy

PH{A(U,V) > k¥ | M=m} + Y*PH{A(U,V) = k* | M=m} = 0, is a most powerful
similar test. Also note that k* can be chosen as one of the possible
values of A(u,v) and the for all possible pairs.u and v lu-v| < 1. There-
fore from now on k* = A(u,v) for some u,v with |u-v|

The run test. )

As to the run test we first remark that the conditional distribution of R,
given M, is independent of Py (an explicit expression of this distribution

is derived in (iii) of the problem). Now define the integer C(m)'z 0 by
P{R<C(m) | M=m} < o < P{R<C(m) | M=m}

and Y(m) ¢ [0,1) by

(38) PL{R<C(m) | M=u} + y(m)P {R=C(m) | M=m} =

then the run test ¢ is defined as follows: (r=u+v)
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1 <
V(u,v,m) =1 y(m) if r = C(m)
0 >

Comparison of the run test and the most powerful similar test

As a consequence of PS < pT (and q? < qz) the function A has the following

properties:

A(i,i) is stricly decreasing in i
A(i-1,1) > A(L,1) > A(i+1,1)
A(i,i=1) > A(i,i) > A(i,i+1)

Moreover,
R < 2r « A(U,V) > A(zx,r).

This can be shown, using the properties of A, as follows. Suppose R < 2r,
If U =V, then U < r and hence A(U,V) = A(U,U) > A(r,r). If U = V-1, then
V < r and A(U,V) A(W-1,v) > A(V,V) 2 A(x,r). If V = U-1, then U < r and
A(U,V) = A(U,U-1) > A(U,U) = A(r,;). This proves the 's' part.

Now suppose A(U,V) > A(r,r). If U = V, then A(U,U) > A(r,r) and hence

U £ r-1 implying R < 2r-2 < 2r. If U = V+1, then A(r,r) < A(U,V) =
A(V+1,V) < A(V,V) and hence V < r-1 implying R < 2r-1 < 2r. If U = v-1,
then A(r,r) < A(U,V) = A(U,U+1) < A(U,U) and hence U < r-1 implying

R £ 2r-1 < 2r. This proves the '«' part.

Further we have that R = 2r iff U=V = ¢ iff A(U,U) = A(r,r). We now
can compare the tests @ and @.

As noted before k* equals A(r,r), A(r,r-1) or A(r-1,r) for some r.
If k° = A(r,r) then ¢ and w* coincide.

1f k* = A(r,r-1) then C(m) = 2r-1. This can be seen as follows.
Suppose C(m) 2 2r, then PH{R < C(m) | M=n} 2 PH{R < 2r | M=n}

= PH{A(U,V) > AMr,r) | M=m} > PH{A(U,V) > k¥ | M=m} > o, because
P{A(U,V) = k*} > 0 and Y* < 1. This contradicts (38).

Suppose C(m) < 2r-2. Then, since PH{R =C(m)} >0 and v < 1,

PL{R < C(m) [ M=m} + Y@P,{R = C(m) | M=m} < PL{R < C(m) | M=m}
< PyiR < 2r-2 [ M=m} = P {A(U,V) 2 AGe-1,r-1) | M=m}

< PH{A(U,V) > k*l M=m} £ o, again in contradiction with (38).

A

Therefore, if the run test rejects H with probability one, i.e. if
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R < C(m) = 2r-1, then R < 2r-2 and hance A(U,V) 2 A(r-1,r-1) > A(r,r-1)= K.
Hence the most powerful similar test w* also rejects H with probability one.
The ordering of A(r,r-1) and A(r-1,r) depends on the alternative under
consideration. Hence only the supplementary rule for bringing the con-
ditional probability of rejection (given m) up to o depends on the specific
alternative.
The case k= = A(r-1,r) is analogous to the previous one.
(ii) Let ps < p? be a fixed alternative. The power of the run test @ is
given by

Eps,p,;w = EPS,PTB(pS’pT | v,

where

B(pgsp) | M=m) =
= (1—y(m))Pp6’p,{{R< C(m) | M=m} +Y(m)Pp6’pT{RS C{m) | M=m}.

Now fix m = m and define o, = PH{R < C(mo) ] M= mo}. Let wl = w](u,v,m)

1
and @T = w:(u,v,m) be the run test and the most powerful similar test of

H against X* : ps < pT with level o,. Then w](u,v,m) = 1 iff R < C(mO).

1
By (i) it follows that R < C(mo) implies w?(u,v,mo) = 1 and hence, since
PH{R < C(mO) | M=nm} = s w?(u,v,mo) =1 iff R < C(mO); i.e.
wl(u,v,mo) = wT(u,v,mO). Therefore

=
1
8
[
v
Q

. _ = *
Pps,pT{R < C(my) | M= my} E % *{@

Since m, was chosen arbitrarely, we have for all m

Px «{R<Cm) | M=m} 2P {R<Cm |M=n}.
PpsPy H
Similarly one shows
Px *x{R<Cm) | M=mn} =P s +{R < C(m+! | M=m}
PpsPg PgsPy
z PR < Ccm) | M =m}

and hence

B(py>p} | M = m)
2 (1=y(m))P,{R < C(m) | M=m}+y(@P{R<C(n) | ¥=m} = 0
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implying

E >0
pgsp}”

as was to be shown.
(iii) See the hint for PH{R = 2r+] l M = m}; in the case R = 2r a similar

argument yields the result.

Problem 21.

(i) The joint distribution of Y]""’YN is given by:
N
P{Y] = Yyaeees¥y = yN} = 121 P{Yi = yi}
N /o N
. y- n:e=—vy.: .
- 1 ( %)p.lu -p) "7 = c(0,8) exp{ 5y, 1og—-p-l—}du<y>
i=1 Vi/1 : i=1 "t 17Pi

C(a,B)eXP{aTl(y)+-BT2(y)}du(y)

with y = (y],...,yN), U a suitably defined 0-finite measure, T](y) =
Zg y. and T, (y) = P X.y
i=1 74 2 i=1 “i7i°
Hence for tests concerning both o .and B Theorem 3 can be
applied.
(ii) By Theorem 3 the UMP unbiased test for testing H : B =0

against the alternative B > 0 is given by

1 when u > C(t)
¢(u,t) =4 y(t) when u = C(t)
0 when u < C(t)

where the function C(t) and y(t) are determined by
E8=0[¢(U,T)| t] =a for all t.

Remark that, if n denotes the number of successes in N trials,

M =

X

g

i

>
M =

=

«

il

>
SR

151

u(y) =

i=1 1

since y; = 1 when the i'th trial is a succes and v; = 0 otherwise. Hence
=N

i=1
(iii) The joint distribution of Yl”"’YM’ Zl""’ZN can be written in

iyi just adds the ranks of the trials at which a succes occurs.
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the form (10) of Section 4.4 with

N
9 = y-u 3 U(y,2) = Z z,
i=1
N
3] = §-8 ; T](y,z) = 'Z v,z
i=1
N M
¥ =0 3 Ty(y,2) = = 2+ Xy,
i=1 i=1
N M
33 = f ; T3(y,z) = iE]vizl + izluiyi,

Hence Theorem 3 can be used for the construction of tests

concerning Y-0.. A similar argument holds for tests concerning §-8.

(HALDANE and SMITH (1948); KRUSKAL (1957))
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CHAPTER 5

Section 2
Problem }.

Student's t-test for H : £ <0, K : £ > 0 is given by ©(X) = 1 & t(X) = CO’
with t(X) = /n X/S.
Let 6 = (£,0) and note that (U,V) = (/n(X-£)/0, $/0) has a joint distri-

bution which does not depend on 8. Then

s(p(e) = EJ0(X) = Pe{t(x) > co} = Pe{/i X/s 2 co}

v

Pe{/ﬁ(i'-g)/s Co - /n&g/s}

v

Pe{/ﬁ(i—g)/c COS/c - vné&/o} = P{U 2 oV - /nEfo}

P{COV - U < /ng/o},
which is increasing in £/0.
Problem 2.

Let B(EI,G) be the power of any level o test of H and let R(0) denote the
most powerful test for testing H against £ = El when 0 is known. (The

existence is guaranteed by the Neyman-Pearson lemma.) Then
B(E|,0) < B(0)

and hence
inf B(El,o) < inf B(0) = a.
o] Y

The last equality holds for the same reason as given in Section 2 of Chap-
ter 5, p. 167, for when 0 + © then B(g) =+ o by the continuity of B and the
fact that RB(g) > o for all o.
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Problem 3.
(i) The demnsity f(S of the joint distribution of Z and V is

@) fs(z,v) = exp [—%(z—é)z]v%f—l exp (-iv).

=] —

vzm 255 ()

Consider the invertible transformation t = z/ % s ¥ = v, with Jacobian,

az,v)| _\[J¥
@ laTt'“,y“) \/;

The joint distribution of T and Y then has density

3) gs(t’y) = fa(t\/% ,Y)\/% =
1

725D exp (-1y) exp [—%(t\/% - 6)2}.

B Dy

The integration pG(t) = f:; gd(t,y)dy gives the first result. Substitution
of v = V(f+t2)/f - Vy leads by some elementary calculus to the second result.
Finally the substitution w = tw yields the slightly different form

£
£-1
1 8t \ VE
%) Pe(t) = —p7e— eXP("% z)<~‘>
8 22(f l)r(%f)‘/ﬁ-? f+t t
) ?erx [_1 £ (W_Gtz )2]dw
b P72 T f+t2 :
(ii) Consider an orthogonal transformation Z. = Zr.l_ a,.X., which satisfies
1 _ i R T A |
a;; = '—/'Tﬁ—,l = 1,...,0. Then Zl = Xv/n and
n n n n
(5) tzi= 5 2f-2- 3 K- x, - ©?
i=2 i=1 i=1 i=1

- by the orthogonality of the transformation.

In Problem 6 it will be shown that Z ,Zn are independently normally

120

distributed with common variance 02 and means Ei = EZZ._I:l aij' We have
El = £v/n and E‘i = 0 for 1=2,3,...,n (by orthogonality). It follows that
%Zl and 517221:2 Zi are independently distributed as N(—g-/ﬁ,l) and )(2 with
(n—1) degrees of freedom respectively. Hence
— 1
X /n _ 7%
n =2yt ;1 n 2.1
{ Fiop ¥-% } 57 Ziop 2
n-1



has a non-central t—distribution with (n-1) degrees of freedom and non-

centrality parameter § = %—/H.
Problem 4.

With the aid of the following formulae we obtain the required powers:
I. One-sided test.
a. O unknown,

}

n~-13a°°

B(E/0) = P{Tn,](/ﬁ?;/o) >t

where Tn_](ﬁfg/o)has a non—central t-distribution with (n-1) degrees of
freedom, and non-centrality parameter vn £/c, and t

B(0) = a.

-1:0 is determined by
H]

b. 0 known,

B(£/0) = PLU 2 u, - /ag/o},

where U has a standard normal distribution and u, is determined by B*(0)=

I1. Two-sided test.

a. ¢ unknown,

B(E/0) = P{T__ (/nE/o) = ¢t } o+

n-13;0/2

+ P{Tn_](/EE;/o) s - 1.

tn—l;a/z

with Tn_](fx; £/o) and t as under I.a.

n-1,0/2

b. 0 known,

B*(E/0) = P{U 2 u /nE/a} +

af2
+ P{U < U9 " vnt/ol.

with U and uOL/2 as under I.b.

The following tables give the required powers. We notice that B* > B,
and that the difference between B* and B becomes smaller as n becomes

larger.

125

Q.
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One sided test

£/0 n 5 10 15
B* B g* B B* B
.7 . 4683 . 3660 .7152 .6548 .8568 .8243
.8 .5573 4364 .8119 L7544 .9270 .9030
.9 .6434 .5084 .8852 .8360 .9672 .9521
1.0 .7228 .5797 .9354 .8975 .9871 .9789
1.1 .7924 .6482 .9666 . 9402 .9955 .9918
1.2 .8505 L7119 .9842 .9675 .9987 .9971
Two sided test
£/0 n 5 10 15
B* B B* B " B
.7 . 3467 .2278 .6001 .5064 .7737 .7129
.8 .4322 .2810 .7156 6162 .8725 .8213
.9 .5210 .3393 .8122 L7172 .9365 .8995
1.0 .6088 4014 . 8854 .8031 .9721 .9491
1.1 .6914 .4656 .9356 .8708 .9893 .9764
1.2 .7653 .5302 .9667 .9203 .9964 .9906
Problem 5.

Z],...,Zn are independently normally distributed with common variance 02
and means E(Zi> = Ei (i=1,...,8), E(Zi) =0 (1=s+1,...,n).

Consider the problems of testing H : E] < C? > C? and
H' : C] = Q? agains K' : C] # g?.

As is seen by transforming the variable Z

against K : Cl

) into Zl-C?, there is no loss of
generality in assuming that ;? = 0.

The joint density of Zl""’zn is
:2.-n/2 1 n o2 s )
(6) (2ma™) exp{-——2—< ¥ z,-2 % z,0,+ .
: 20% \j=1 1 i< i=1 1
We make the identification of (6) with (1) of p. 160 of the book through
the correspondence
2 2 2
8=10,/0% 9= (£y/a”,..0,r /0%, 1/6%)
n
1

= p . - 250 _
U(z) = 203 T(z) = (z2,...,zs, izl zi) = (T],...,TS) .



Theorem 3 of Chapter 4 then shows that UMP unbiased tests exist for the
hypotheses 6 < 0 and 6 = 0, which are equivalent to ;1 < 0 and Cl =0
respectively. Now

Ve U ~ Zy
- s=1 .2 2.5 n 2.4
(Ts L 1 71 (Zi=s+l Zi)

i
]

is independent of T when Cl =0 (0 fixed = 02 fixed = distribution of V
does not depend on & = V is independent of T by Corollary 2).
It follows from Theorem 1 that the UMP unbiased rejection region for

H: C] <0isv 2 Cé or equivalently

z
t(z) = C., where t(z) = 1 .
0 z.2 )
N i
i=s+1 n-s
In order to apply the theorem to H' : C] = 0, let
. U _ Z
- _ os-1 I n 2 2.1 -
Ty 2i=1 Ty (zi=s+1 2y ¥ Zl)

Now W is also independent of T when El = 0, and is moreover linear in U.
The distribution of W is symmetric about O when Ql = 0. It follows from
Theorem 1 that the UMP unbiased rejection region for H' : L, = 0 is

1
lw| = c'. since

/1-w?
the absolute value of t(z) is an increasing function of |w|, and the
rejection region is thus equivalent to

|zl|

el = 2
n i
(Zi=s+1 n—s)

From the definition of t(z) it is seen that t(Z) is the ratio of two
independent random variables ZI/U and (Zg=s+1

\'
¢}
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1
Zi/ (n—s)oz)’. The denominator

is distributed as the square root of a X2 variable with n-s degrees of free-

dom divided by n-s; the distribution of the numerator, when Cl = 0, is the

standard normal distribution. It follows that the distribution of t(Z)

under L, = 0 is Student’s t distribution with (n-s) degrees of freedom
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Problem 6.

The result of this problem may be obtained as a straightforward application
of a standard result from multivariate analysis. See, for instance,

Theorem 2.4.1 on pp. 19-20 in ANDERSON (1958).

Problem 7.

X],...,Xn is a sample from N(E,Oz). Consider the same orthogonal trans~
formation as in Problem 3 (ii), i.e. we have Z] =Xv/n ~ N(/HE,UZ)and
ZZ""’Zn are normally distributed random variables with common variance
and mean zero. Moreover, Zl""’zn are independent. )

By Problem 5, it follows that the UMP unbiased tests for testing £ < 0

and £ = 0 are given by the rejection regions
Z] |Z

|
{z’i‘=2 Zi/(n-—])}i 7 Fo =0 {z‘i‘=2 zf; (n-l)}%

Using Z] = Xv/8 and (5) in the solution to Problem 3, it follows that these

>C

respectively,

rejection regions may also be written as

A X o ang |/a¥| 1
{z’E‘ ] (Xi—f)z/(n—l)}; 0 ‘F}.‘ | (xi—i)z/(n—l)}2

> C.

1= 1=

These results correspond to formulae (16) and (17) of Section 2.

Problem 8.

(i) The random variables Y],Yz,... are independently distributed as
N(0,5%).

PROOF. For each fixed n 2 1, (Y],YZ,...,Yn)' is a linear function of

(Xl"'°’Xn+1)' and hence has a multivariate normal distribution which is

completely specified by its expectation and covariance structure. We have
-4
EY = {n(n+1)} [nEXn_H - (BX, +... +EXn)] =0, n=1,2,...,

and, for m > n,
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cov(Ym,Yn) =

-4 m n
{n(@+)m(m+1)} cov(mxm+l - E X,,nX .+ & X.,) =

3
_% _ 3
@ Du@ )} *lom cov (X 15X, ) ~mcov Furt? 521 N3

( m m n
-ncovi X bN X.>+ cov( r@ X, I X)] =
n+]’i=l 1 i=1 i’ imp J

2

{n(n+1)m(m+l)}_%[0—0-no‘ +n02] = 0.

By symmetry of course cov(Ym,Yn) =0 for m < n.

Furthermore we find for 02 (Yn):

Q

Z(Yr}) = cov(Yn,Yn) =

n n
-z Xi,an+ -z X.) =

-1
{n(o+1)} * cov (an+ Z

1

{n(n+1)}"[n202 -0-0 +n02] = o2,

il

This proves the propositiom.

(ii)H:o=00, K:c=o].
Assume 01 > 00. The case 01 < UO can be treated analogously.

The joint density of Yl""’Yn is equal to

-n 1 o2 .
p. (y) = (V21 0,) “expi- T vy, i=0,I1,
in i 20}% j=1 i

under H and K respectively. Therefore

e - (2 e {i (- 2) £ 5
—r = — - —] T yii.
Py, (V) o, exp |4 0(2) c% j=1 Y

So we have

Pip (M
A < ———— < A
0 Pon (V) 1
6] n o.\n
(9 T 2 1)
e AO( 0> < exP{z(cg 021 )le i< MG
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H is rejected or accepted at the first violation of this equality, i.e. H
is accepted when 2?=1 Y? is too small and rejected when Z?=I Y? is too

large. For the determination of AO and Al for given confidence level and

power the reader is referred to Section 10 of Chapter 3.

(GIRSHICK (1946))

Section 3
Problem 9.
We test H: T £ 0 against K : T > 0, at level o = .05, based on two in-

dependent samples X ..,Xn and Y],...,Yn from N(E,OZ) and N(n,Tz)

1°°
respectively. The hypothesis H is rejected when

(Y, -T2
___.3;___5_ > C,
Z(x-%) n

where Cn is determined by

(n é[ Fel,p-1 4y = .05
n

(cf. (20) and (22) in Section 3, p. 169).

1

For an alternative with 10 = = A, the power is given by

z (v, -1 T, - ) s
PA{_"‘:T z Cn} - PA{—"T-T:E' 2C0T } -
z(xi-x) X(Xi-—x) c

=p{v_>c A% = p{y_ < c % = 1-plv > 1A%},
n n n n n n

where Vn has an F-distribution with n-1 and n-1 degrees of freedom.
Note that the power function is increasing in A.
To determine the sample size n necessary to obtain power = .9 against the

1

alternatives with 10 = > A, the number n has to satisfy (7) and

w0
F dy < 0.1.
é;lAZ n~1,n—l(y) y
n
By trial and error we find for A = 1.5 that n > 56, for A = 2 that n > 20
and for A = 3 that n = 9.
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Problem 10.
The test QO(W), with

Y
W=
AOSx + SY

which is given by

<w <
0 when C1 S w< C2,

1 when w<C, orw>C

©(w) = {

and where C1 and 02 satisfy

Ep [o(] = o  and Eyr [wo(w)] = QE [wl,

2
. . r T =
is UMP unbiased for H : T;F AO.
Under H' and if m = n, the distribution of W is the beta-distribution with
density B . S in that ca the distribution of W i
Y B((a-1), 4 (@-1)) %)+ S0, im case, u s
symmetric about i.

C
= - 1 1 = 9’.
Take C2 1 C1 and let C] satisfy &) B(%(n—l),%(n—l))(w)dw S , then

Cy
Eplo] = [ B

0 1-C

1
(-1, 3 1)) @+ RO RIS
=2 B, b)) M 7 @
and

Egr [ho(W) ] = B [(W-1on)] + SEgloM] = ja = B e (W) -0,

since ¢ is symmetric about } and the distribution of W is symmetric about },
so that EH-[(W-i)w(W)] = 0.

Finally we have

Sé
€ ———— -
{Cl < A 32 N 32 <1 Cl} ©
07X Y .
2 2 2 2 2 2
& {SY z CIAOSX + C]SY and SY < CI)AOSX + (1 Cl)SY} L4

2 2 2 2
& {(1 )8y < CASy and C Sy < (1 _CI)AOSX} &
2 2
AoSx 1-¢, Sy 1-¢,
& < and g ———— &
g2 ¢ asz G
Y 0°x

7]
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Problem 11.

Define R = (X],...,Xm,Y],...Yn)u Let A be the orthogonal (m+n) x (mt+n)

matrix which defines the orthogonal transformation Z = AR such that

8 T z Y {l 1}_% Y-X
= P . o= e -
© A5 N T ey T ey 7R
(9) Z % > { } %< g X ; Y >
= a,.X. + a, ., Y. = {im+n .+
2 j=1 2373 4= T2,04m] i=t b =1 3

This defines the first two rows of A. The orthogonality conditions are

easily checked. The matrix A may now be completed using the Gram-Schmidt
2

method. The covariance matrix of R is equal to D(R) = ¢ Im+n

so that

2 2

An' = 0“1

D(Z) = D(AR) = AD(R)A' =0 _

It follows that the components of Z are independent and have common

variance 02. For the expectation of Z] and 22 we find

R -3
EZ, = {E + E} (m-¢&), Ez, = {m+n} *(wf-nn).

From (8) and (9) we obtain

-1 -1
ISR I R N O . S S | O
(10) alj =-= {m + n} s J=1,0..,m; a]j == {m + n} s

j=m+l,. .. ,mn;

Nl

(1) a

2 {m+n} s Jj=1,...,mn.
Because A is orthogonal we must have for i= 3,...,mn,

m+n m+n

12 X a..a,. =0 z . . =0
(2 j=1 43 T 42y iy %y T O

therefore, from (10) and (12), (11) and (12),

] o | mn
(13) -= XX a,,+— ¥ a,, =0,
M=) 1 0 jopeg i)
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m mtn
(14) X a,,=- I a,,.
j= 1 1] j =m+ | 1]

So, from (13) and (14) it follows for i= 3,4,...,m+n, that

m min
(15) Z a,. =0, X a,.=0.
=1 1] jem+1 I

We find for EZi, i=3,4,...,m%n, using (15),

m m
EZ, = E ( 2 a,.X. + X a, Y.) =
1 j=1 13 3] j=1 1,]+m j
E m m+n
= X a,. +n T a.. =0
j=1 1] j=m+1 1]

So Z,,...,2 satisfy the conditions of Problem 5. To test H : n-f = 0,
1 mHn

the critical region is defined by

124]

m+n 2
Y 29/ (m+n+2)
i=3 1

Using 2'Z' = R'A'AR = R'R, g% - 5@ (X, -i)z, S
& j j

> C.

may rewrite this as

V(Sf( + Si.) / (m+n-2)

The test statistic has, under H, a Student distribution with mtn-2 degrees

of freedom, so C is determined by P([t >C) = qa.

m+n--2I
Problem 12.

(n)

We restrict attention to the ordered variables X(]) < ... <X since
these are sufficient for a and b, and transform to new variables Z ==nX(]{

. . 1
Zi = (n-—i+l)(X(1)--X(1 1)) for i=2,...,n as in Problem 13 of Chapter 2.
The joint density of ZI’ZZ""’zn is then

_ .-n S R
P(z],zz,...,zn) = a exp{-a (z-mb) - a 152 zi},

z > nb, ZyseeesZy = 0.

(i) Under the hypothesis H : a = 1, Z1 is easily seen to be sufficient
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for b. We shall prove that Z1 is also complete. Consider

i - (z-nb) b -
E (£(Z) = [ £(2)e F ™4z = ™ [ f(z)e *dz.
b 1
nb nb
Now suppose that Eb(f(zl)) = 0 for all b € R, This means that L:)f(z)e—zdz
is equal to zero for each b € R. This implies that JI £(z)e %dz = 0 for
each interval I, from which it follows that f(z) = 0, except possibly on a

set of Lebesgue-measure zero. This proves completeness.

Considering only unbiased tests, and thus only similar tests, by Theorem 2,
Chapter 4, all considered tests ¢ then have Neyman-structure w.r.t. Zl’
i.e. for all such tests we have

Ele@s...z) |z, =21=a

Following the reasoning of Section 3 of Chapter 4, we only have to solve

the "optimum problem" on each surface Z] =z, separately.

The conditional distribution of ZZ""’Zn given Z1 =z has density
. , n

(16) h(zz,...,zn | zl) = cexp {- Py iEZ zi}.

from which it follows in particular that Zl and ZZ"

Moreover, (16) constitutes an exponential family for which the UMP test- for

..,Zn are independent.

the hypothesis H : a = | has critical function (cf. Section 2 of Chapter 4)

n
1 when Zi=2 z; < Cl(zl) or > C2(zz)
an m(zl,...,zn) = o
0 when Cl(zl) < Zi=2 z, < Cz(zl)
Because of the above mentioned independence of Zl’ and ZZ""’Zn’ the

constants Cl(zl) and Cz(z]) are independent of z, and are determined by

1

(18) Ea=](p(zl,zz,...,zn) = 0,

n n
(19) E =1[{i§2 Zi}(p(zl,zz,...,zn)] = Ea=1[i§2 ZJ o .

The test w(z],...,zn) considered as an unconditional test is then UMP

unbiased for H : a = 1.

The acceptance region derived from (17) may be rewritten as follows
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{c, < z z, < Cz} @ {zc1 < z 2z, < 202} &
1 i=2 i=2

{zc <2 1§2 (x - mln(x],...,xn)) < zcz}.

By Problem 13 (ii) of Chapter 2 for a = 1, the statistics ZZ ZZ are

independently dlstrlbuted as X with 2 degrees of freedom and hence
Z?=2 ZZi has a X distribution with 2n~2 degrees of freedom. Hence kl = ZC]

and k2 = ZC2 must satisfy

: Xz 2 y dy = (¢4 i1.e. 8
J’ ’b 2 ( )d (n ])(] U.) (i e 19)
k] X n-2 y y T °

The last equality is equivalent to (cf. Example 2 Section 2 of Chapter 4)

k
2 2 B
fkl Xop (9)dy = 1-a.

(ii) When b = 0, the statistic 22=1 Zi is sufficient for a and also complete,
which can be shown using the fact that for b = 0 the statistic i Z?=1 Zi has
a Xz—distribution with 2n degrees of freedom.

We can therefore follow the same reasoning as under (i).

It is easy to show that the density of zl""’Zn given Z?=1 Zi = ¢ is a con-

stant on the following section of the hyperplane Z?¥l z, = c:
n
> > = =
{z1 2z nb, ZyseesZ 2 0, izl z; cl} Sb (say).
Hence (Zl""’zn ]Z?=l Zi = c¢) has a homogeneous distribution over Sb and

a homogeneous distribution over S, when b = 0, i.e. when H holds.

0
Application of Neyman & Pearsons fundamental lemma to this conditional

situation shows that a test with critical function:

1 1

0 when 0 < z, < k(e)

o(z

s 2Z

| 1 when z, > k(c) or z, < O
. {

n
¥ oz, =¢)=
i=1 1

is MP for H : b = 0 against K : b = bl’
where k(c) is determined from

(20) Ebzoq)(Zl,...,Z



136

Because the same test is obtained for any b, # O, the test is UMP for

H: b =0 against K : b # 0.

1

Now, (20) implies

n
PO < Z) < k() | izl z, = c} = 1.
This may be rewritten as
n n
Pol0 <2,/ izl Z; <k(e)/c | izl Z; =cl=1-

or, by the independence of Z?= Zi and Z] /Z€= Zi’ as

1 1

n
p_{0o<z /=
b=0 100

Z, < ¢} = 1-a.

i

This shows that k(c) /c = C does not depend on c. Hence the test with
acceptance region

n
21) 0<z, / ¥ z,<¢
1 i=1 1

now considered as.an unconditional test is UMP unbiased for H : b = 0

against K : b # 0.

A trivial calculation shows that (21) may be written equivalently as

n min(xl,...,xn) , n o,
0 < Y < C (i.e. 0 < z; /'Z2 z; < Q).
- 3 1=
izl {Xi m1n(x],...,xn)}

Furthermore, from Problem 13 (ii) of Chapter 2 we know that, when b = 0,
n . . . 2 2 .
ZZ] and Zi=2 ZZi are independently distributed as X2 and Xpn—9 Tespectively.

Hence n
(n—l)Zl/ X Z

2, P17 T2 0020

an F-distribution with 2 and 2n-2 degrees of freedom. It follows then

easily that U = Z1 /Z?=2 Zi has probability density
(n—])(l+u)—n, u =20,

(PAULSON (1941), LEHMANN (1947))
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Problem 13.

.

Notice that the joint density of (X ..,X<r)) is equal to

a

. 1.k Xp~b
h(x] yo o ,xr) =C* exp {—E izl (xi—b) - (n—r)< )} R

< Xp € see <X o

x 2 r

1
as follows from Problem 13 (i) of Chapter 2. Transformation to new
variables Z] = nX(]), Zi = (n-i+1)(x(1)-x(1_l)) for i=2,...,r
(2 £ r £ n) as again in Problem 13 (ii) of Chapter 2 gives the joint
density of Zl,...,Zr
p(z,5...,2. ) = C- exp ——l~(z -nb) -1 E z.]
| RO o a "1 a j=2 i,
2, > nb, ZyseresZy, = 0.
Thus, the joint density of Z],...,Zr has the same structure as the
joint density of Z‘,...,Zn in the preceding problem. (This result could

also have been obtained by integrating out the variables =z <52 of the

T
density of Z],...,Zn as one can see easily). Notice that this time
X(l),...,X<r) are'(of course) sufficient for a and b, as no further infor-
mation is available, and that Z

.+,Z2_1s a one to one transformation of
m (r) "
the X seeosX .

1’
It follows that the results of the preceding problem hold when we replace
n by r throughout.

This means that the UMP unbiased test for H : a = 1 has acceptance region
T
(22) C,< T gz <C

where the constants k] = ZC1 and k2 = 202 are determined by
ko 9
Ik] er_Z(Y)dy = 1-0,

k

2 .2
J X (dy = 1-a.
kl 2r

Expression of the critical region in terms of the original variables

X]""’Xn’ as was done in the preceding problem, is in this case of

course impossible.

(n (r)
beoosX

The critical region can however be expressed in terms of X

Using the identity
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; Z, = (n—r)X(r) - nX(]) + ; X(i)
i=2 1 i=1

(22) may be rewritten as

Cl < (n—r)x(r) —nx(]) + X x(i) <C

i=1 2

The UMP unbiased test for H : b = 0 has acceptance region

0 < z / Z z, < C
i=2 1

where U = Z1 /Z§=2 Zi has, for b = 0, probability density

(n—l)(1+u)—r, u 2 0.

Section 4
Problem 14.

Let § : R" > R be any measurable function and L any constant such that
(8(X) ~L/2,6(X) +L/2) is a confidence interval for &. Furthermore, let N
be any integer and El,...,EZN such that |£i-£j] > L whenever i # j.
Then the sets
i = L&enx) | |6(x1,...,xn)~£.[ S L/2}, i = 1,...,28
are mutually exclusive. Let Y(l) = (Y(l),..., (1)) be a sample of fixed
size n from N((E - E )/o31), and f(1 (y) the density function of Y(l)
i=1,...,2N. Slnce f(l)(y) -+ f(l)(y) as 0 > « for all i, it follows from
the Lemmas 4 and 2 of the Appendix that there exists a 0. > 0 such that

N
for o > o,
ngi,o{X €8}~ P olX e s} =
= }P{(oyfi)-+gl,...,cY(l)+ El) € Si} +
- P{(OYfl)4-&1,...,0Y(1)+-£1) € si}l =
= IP{Y(i) e T,} - piyD) ¢ Ti}| < w7,
where

Ti = {(yl”"’yn) ] (0y1+g1""’0yn+gn) € S]..}.
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Since
. ~1
min PEI,O{X € Si} < (2§) 7,

it follows for o > ON that

A
2

m;n Pgi,O{X € Si}

and hence that
inf P, {|8(X)-&| < L/2} s N .
£,0 £,0

Because N is arbitrary, the confidence coefficient associated with the
intervals (8(x) -L/2,8(X) +L/2) is zero, and the same must be true a

fortiori of any set of confidence intervals of length <L.
Problem 15.

(i) mSZ/G2 is Xz—distributed with m degrees of freedom and, conditional on
S =138, Y is N(0,0z/sz) distributed. Therefore, conditional on S = s,
sY/o = 8Y/o is N(0,1) distributed. Since this distribution does not depend
on s, SY/0 is N(0,1) distributed independently of Sz. Therefore

= (8Y/o) / 755757 is t-distributed with m degrees of freedom.

(ii) The random variables XO,S,Xn0+1,XnO+2, .. are independent; X. is

0
N(E,o /n ) distributed, X, i i2n.+1, is N(§,0 )dlstrlbuted and

0
( -1)8 /G is Xz—dlstrlbuted with no—l degrees of freedom. Conditiomnal on

S = s, a, b, and n are fixed and fb,xno+],xn0+2,... are still independent

with the same normal distributions. Since

n _ n
izl a, (X, -8) = noa(Xo—«E) + izno-l-l b(X, - &),

we have that conditional on S=s, Zg= a.(X-—E) is N(O,n a202+(n—n0)b202)

= N(O,Ztil___1 a202) distributed. Therefore, still conditional on S = s,

_ 1z _ 2 n 2
Y = 151 a; (X, -8) / /(s L, _, a})

is N(0,0zlsz) distributed. It follows by (i) that Y is (unconditionally)

t-distributed with no—] degrees of freedom.

(iii) There exist numbers a and b such that n a+-(n—n0)b = 1 and, for

0

324~(n—n )b = c/S if n > n, and if the following equation

given ¢ : n 0

0
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in a, obtalned after substltutlon of b= (1-n a)/(n no) in

n0a2 + (n—no)b = c/S has a solution

(l-noa) _ 2
Oa + (n—no)mo—)z—— = c/S .

This equation is equivalent to

2 2 _
nnpa” - 2n0a + 1 - (n—no)c/S =0

and this equation has a solution if
2

P

v

4ng - 4nn0(1 —(n-no)c/SZ) >0en

s?
c
we take a; = ... = ano = a, an0+] = ... = a = b where a and b are the

2
Hence for n = max{n.+1, LA ) N, R » the problem is solved if
0 c 0

solutions of the equations above.

(iv) Apply (ii), where a; =
(STEIN (1945), CHAPMAN (1959))
Problem 16.

(i) Clearly, the interval Z?= aiXi * L/2 has length L. Moreover

1

n
P{): a.X.—L/ngs):ax +L/2}
i=] 11 i=1
n
= - < - =
{ L/2 < ifl aiXi g < L/Z}

= { L/2Ve < ; a.(X.-E)//ESL/Z/E}=
i=1 11

IL/ZVE

-L/2/c 0

n—1 Ay = v,

. n _ n _ - _ .
using Zi=] a; = 1, and the fact that Zi=1 ai(xi £)/Ve t(n0 1), which

follows from (iii) of Problem 15.

(ii) P{X - L/2 < £ <X+ L/2} = P{|X-&| < L/2} =

(EEL g Ly,



2 —
since by definition (Problem 15, (iv)), n = [J%—} + 1 ='J%L =

Furthermore,

e LI }=-L/2"5
5 2e)  ijave

since a(X~£)/S ~ t(no—l) by (iv) of Problem 15.

t, _(y)dy = v,
ng-1 yldy = ¥

141

We now show that the expected number of observations under H2 is slightly

lower than under Hl' Define

g2
nHl max{nod-], [7;] + 1},

2
oy, max{no, {%r] + 1}.

Since [Sz/c] + 1 is an integer,

\
=]

np =np = [Sz/c] + 1 if [Sz/c] + 12
1 2 0
nHl- 1 = nnz =, if [Sz/c] + 1

IA
=1

So

E(nnl)-E(nHZ) = E(nH] - nHZ)

P{[s%/c] + 1 < ng}

p{s?/c < no}

p{U < noc/Gz}
where U is Xz-distributed with n,-1 degrees of freedom.
(STEIN (1945), CHAPMAN (1950))

Problem 17.

(i) Define the critical function
. n
bOif (5 a;X; - /e 2 ¢,
P(X 500 05X ) =
0 otherwise.

Then we have to prove that

e)) Bc(ﬁ) = ng(xl""’xn) < a for £ < go

(2) Bc(g) is a strictly increasing function depending only on &.
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By Problem 15 (iii) (Z_, a,X,~E)/Vc =X
Z?=] a; = 1) has a t—distribution with n
Hence

?=] ai(Xi-E)//E (since

0—1 degrees of freedom.

B, (E) = EQ0(X;,...,X )

- PE{ - aix§c~ o g C}

oo

-1{(y)dy, which is strictly increasing in .

J tn,
C-(E-E) /Ve
Also, by the definition of C, it follows immediately from the preceding

equality that Bc(ﬁ) < o for all & < EO.
(ii) From the equality

B.(E) = ] tg —1(dy = B
R NV

we get

where Fv(t) denotes the probability integral of a t-distribution with v

degrees of freedom. Hence
- ( 175 ¥
c = - ,
Fno_](l-B)'-C

(note that since a < B < 1, we have C < F;I_I(I-B) < ),
0

2 2
(iii) Since n = max{n,, s 1} it follows that n > —>— or equivalently
0 c [

This implies
Ya(g-g.) £E-¢
(23) > = 0
EE-E)  E-g,

(24) 3 < 7 for all € < &

for all & > EO

0°
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First we show that the test determined by'vé;ﬁi— EO)/S > C is a level o test.
Indeed we have for all & < CO

Pg{fﬁﬁ)’_ - p{BED _Qiicz)_}
£

S s
z aX.-§& 3 T aX.-¢
iT1 _ ol _ ii
SPE{_—?C'—”’ /g} PE{ /e }so‘

where the first inequality follows by (24) and the fact that vn(X-E£)/S

and (X aiXi-E)//E have a t-distribution with n -1 degrees of freedom,

0
by Problem 15 (iii) and 15 (iv). The second inequality follows by part (i).

Analogously it follows from (23) that for all & > EO

5 ;% -¢ ‘S”Eo}_ T aX -&
S T )

Hence the test with rejection region /E(i-go)/s > C based on H2 and the
same ¢ as in (i) is a level o test of H which is uniformly more powerful

than the test given in (i).

(iv) part 1 (extension of (i)).

For the procedure H] with any given ¢, let C now be defined by

@ _ o . . . _ .

IC tnO—I(Y)dy 5 Then the rejection region |(Z aiXi EO)//b] > C defines
a level o test for H : & = EO against K : £ # EO with power function BC(E)

strictly increasing in [E-—EOI and depending only on £.

o).

The power of the test is

T a.X. -E
_ i '
R

Hence
¥ a,X.-§&
_ - _ i1 0
1 Bc(i) Pg { C < ¥ < C}
g_go zaixi_g g_go
e SR TNNTE Ry

Since (Z?=] aiXi"E)//Z has a t-distribution with n,

it follows by elementary consideration that 1-Bc(€) decreases strictly as

-1 degrees of freedom

£ tends away form Eo in either direction.
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part 2 (extension of (ii)).
We must show that, given any alternative 51 and any B, 00 < 8 < 1, the
number c¢ can be chosen so that Bc(gl) = B,

From the equality

£17%g
_C..._____._./E oo
B (E) = o{ tno_,(y)dy + f £.-¢, tng-1(9)dy

%

it follows that c¢ is the solution of the equation

1-8 = Fno_l(C - f—]—‘;a—§9-> ~Fo -1 (—c - i}f—")

Note that in this case we obtain an integral equation for c, but this

equation always has a unique solution for a < B < 1|,

part 3 (extension of (iii)).

We must show that the test with rejection region |/E(i-g0)/s] > C based
on Hz and the same ¢ as in part 1 is a level o test for H : £ = EO against
K: ¢ # EO which is more powerful than the test given in part 1.

Let EC(E) denote the power function of the test with rejection region

| /X - 50)/sl > C.

Case (1): & > go,

We have

N /H(&-&O) ﬁi(&—&o)
c [ S } >

I-B(E)=P€{-C————-———<T<C—

e S ree- £

where T has a t-distribution with no—l degrees of freedom. Since

1-8,(E)

ﬁ?(g-go)/s > (E-—EO)//E, it follows from the preceding equations that
1-B,(8) < 1-8_(8).

Case (2): & < EO'

Since now /E(E-—EO)/S < (§- EO)//E, we get the same relation between
B.(E) and B_(E) as in case (1).

(STEIN (1945), CHAPMANN (1950))
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Section 5
Problem 18.
Define
a_le_(x_b)/a .if x =2 b,
£ (x) =
a,b 0 if x < b.

R ' R
If X has density fa,b(x)’ then X/a' has density fa/a',b/a'(x)' Let ¢ be the

UMP unbiased test of Problem 12 for the hypothesis H : a = 1. Then

o' (x) = w(x/ao) is a UMP unbiased test for H' : a = ay. We have
! = B
o if a = a,
=E ©(x) = {
(a/ag,b/by) z 0 if a# ag

Hence, ¢' is unbiased.

Since each test Y for H': a = a, can be transformed by Y'(x) = w(x-ao) to

0
a test for H:a = 1 and conversely, ¢' is UMP unbiased.

The acceptance region of ¢' is

< 22{—}{-5-— - min(iL xn>] <c
)

¢ 2y’ "t ay

i 2

and hence the most accurate unbiased confidence interval for a is given by

2 . 2 .
—E—Z—Z[xi~m1n(x],...,xn):| < at%g c—lz[xi—mln(xl,...,xn)].

Problem 19.

(i) Let X and Y be independently distributed according to the binomial
distributions b(p],m) and b(pz,n) respectively. The conditional distri=

bution of Y given Y+X = t is given by (21) on p. 143 of the book.

plY =y/X+Y =1t} = ct(p)(t‘fy)(;‘)py, y=0,1,...,t
where p = (pzq])/(plqz) and Ct(p) is a norming constant. The UMP unbiased
test of the hypothesis p = Po is the same for each t on the line segment
X+Y = t as the UMP unbiased conditional test of the hypothesis p = Po
The conditional distribution of Y given X+Y = t constitutes a one-
parameter exponential family, so Lemma 1 can be applied. The conditions of

of this lemma are satisfied because the above test is strictly unbiased as

is shown on p. 128, and the conditional distribution can be made continuous
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by addition of a uniform variable (cf. p. 180, p. 81 of the book).
Therefore most accurate unbiased confidence regions exist and are indeed

intervals.

(ii) In the same way, using the conditional distribution of X given X+X'
and X+Y as stated on p. 145, it follows that most accurate unbiased con-
fidence intervals exist in a 2x2 table for the parameter A of Section 6

of Chapter 4.
Section 6

Problem 20.

(i) Consider the following transformation:

2 _yp n n
Z=-—§-—+b%2 bv.+iy.=2a.y.
1 n . i n/°’i s 1171
i=] i=]
2,74 B n
22 = (a + nb") i};] (avi —b)y:.L = izl 8555
Then, since ZI.I_ v, = 0 and I v.2 =1,
i=] i i=1 i
n 2 -1 n n 2
}:az.=5*—+b2 bZZv.2+—za—va.+n--éz—=l
i=1 Ii n j=1 1 n i=1 1 n
n 2 _ n -
and analogously, ):i=] a,, = 1 and zi=l 21130 ~ 0.

Following the Gram-Schmidt procedure we can now construct an orthogonal

transformation
n
Z,= X a,.¥, i=1,2,...,n

with Z] and Z2 as above.

For j=3,4,...,n we have

n 2 ~3 n
I a.a,, = (—‘i—+b2) a (bv.+5)a..=o
i=1 11 i n $=1 i n/ ji

4

1 =
n 2.-4 1
iEI aZiaji = (a“ +nb") iil (av]._—b)aji =0
or
n a D
(25) b Z v,a,, =~=1% a,,
=1 1ii i ji
n n
(26) a X v.a..=b I a.,
i=1 1+ 11 i=1 31
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so that for j=3,4,...,n

n n
27 Y v.a..=0 and I a., = 0.
i=1 1% i=1 J%
For (a=0and b # 0) or (a# 0 and b = 0) this follows immediately from
(25) and (26). For a # 0 and b # 0 it follows from (25) and (26) because

(h— + é—) ¥ a,, =0, or ab ta 5 o, .
a n/ j=1 ii na =1 1]
. . n 2 n 2
By orthogonality of the transformation zi=l Zi = Zi=1 Xi and hence
n 2 _n 2 _ 2, .2
Zi=3 Z]._ = Zi=1 Yi (Z] +Z2).
Now
2 2\~1 n 12
2742 =12+ p b I v,Y, +aY| +
1 2 n .
i=1
n
+ (a2 + nbz) l[a X ViY - nbY] =
i=1
2 o 2
=nY + ¥ v.Y,
i=1 b1
s0
n n L n n — n 2
(28) s 2= 1 ¥ -o¥ - ( T v.Y.)z = 5 (Y.-Y)z-< T v.Y.) .
j=3 1 4oy 1 j=1 i1 i=1 i g=1 + 1

By Problem 6,2 "Zn are independently normally distributed with common

12°°
variance 0 and means

2 -if, n
EZ, = (é— + b2> z[b T
IA\n i=1

<
=
4
+
o3
| 22]
]
| I
[f]

M

(Y'*GVi)] =

a
n

i
P
+
o
N
\./‘
Nt
—
o
I
TM3
<
e
~~
-
+
(=
<
e
SN’
+

i=1
2 2 _% az 2 _%
a . vy =

(17 +b ) (b*S+ay) <7;~+ b ) 0

(a2 + nb2)~%(a6-nbY) (analogously)

EZ2

and for j=3,4,...,n

EZ. = ¥ a..EY. =
iog=y 33 4

" ™M

| aji(Y4~6v1) = 0, by (27).

Putting s = 2 in Problem 5 the UMP unbiased test for testing
- -1
H: (aZ/n-bbz) %p = (aZ/n-sz) zpo (or equivalently H : p = po) is given

by the acceptance region
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121 - (az/n+ bz)_%ool

n 2
\/zi=3 2/ (n-2)

Using (28) this can be written as

vin +a¥ - pOI / Ya*/n +b?

\/[z“ D=5 v, ] )

i=1

n
b =5,

A
o]

where C is determined by Lcc tn_z(y)dy = 1-0 since under H the test

statistic has a t—distribution with n—1 degrees of freedom (cf. Problem 5).

2

(ii) Putting 8% = Z}_ (Yi-?)z

- (5., v;Y)7 we have for all t > 0

[P(a,b) - p(a,b)| =t

viYi + aYy + C‘/az/n+b2 /Szl(n—Z) - p(a,b)} £t

ViYi +aY - p(a,b)

" o/a?/n+b2? vn=2

t/o

€ —— .
Va?/n+b?

Since (b Zt;=1 ViYi+ aY¥ - p(a,b))/0va?/n+b2 1is standard normally distri-

buted and independent of SZ/(I2 which has the xz—distribution with n-2
degrees of freedom, it follows that for (a,,bl) and (a2,b2) satisfying
/alz/n+b% < v/a;/n-*b2 s

Pa, ,b]{lﬁ(a],bl)—p(a],bl)[ <t}> Paz,bz{|5(a2,bz)-o(a2,b2)| <t}.

Since f1 is an increasing function it follows from Problem 1! of Chapter 3
that

Ea b, [£ ([ b )-pCa b)) < Eaz,bszl<|5<a2’b2>‘p<82’b2>1>]-

The similar result for f2 and p can be shown in the same way, giving the

required conclusion.
Section 7
Problem 21.

The set of order statistics

N (N N
T(Z) = (zfl),...,zg 1);251),...,22 2);...;221),...,22 ey
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is a complete sufficient statistic for F (Chapter 4, Example 6). A

necessary and sufficient condition for (48) on p. 184 is therefore
(29) Elp(2) | T(z)] = a  a.e.

The set S(z) consists of the N !...Ncl points obtained from z through

permutation of the coordinateslzij (j+ 1’2""’Ni) within the ith subgroup
(i=1,2,...,c) in all N
{z':T(z") = T(2)}.

It follows from Section 4 of Chapter 2 that the conditional distribution
]!...Nc!
points of S(z). Thus (29) is equivalent to (49) on p. 184, as was to be

l!...Nc! possible ways, so that S(z) =

of Z given T(z) assigns probability l/(Nl!...Nc!) to each of the N

proved.
Section 8

Problem 22.

For ¢ = 1 and m = n = 4 the rejection region given by (54) on p. 188

becomes

8
j§5 2 > clT(2)].

The test statistic takes on only (2) = 70 distinct values over all per-
(1) (8
seses

mutations of Z so for o = .10 the test rejects H for the 7
largest ones. The rejection region turns out to consist of the points gz
for which Z?=5 z, 2 12.09, corresponding to {25,26,27,28} = {Z(i): ie I}
with 1 = {3,4,7,8},{4,5,6,8},{3,5,7,8},{3,6,7,8},{4,5,7,8},{4,6,7,8} or

{5,6,7,8}.
Problem 23.

A point (xl,...,xm,y],...,yn) is in the acceptance region A(A) for H(A)

if and only if

1 m+n 1 m 1 n 1 m
‘; x zZ, "E Y z, = {; z (yi—A) —E T x. = I;—}_(-Al
jem+t I 3=1 ] j=1 j=1 J
is exceeded by at least (m;n -k = u(m;n) of the quantities
| wn ;] &
1—- z zj, - =— ¥ zi,
j=m+] J mj:] J

where i, < .,., < i ;i
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1,2,...,m¢n.

Denote for any finite set A the number of elements of A by N(A) and let
= {j : ij € {m+1,...,m+n}}.

Then

m+n
pX Z2: =

1
i. ey i,
j=m+] ] m

1 3

=R

m
I oz;, =
j=

n m
l{ bX y[-N(Jf\{m+1,...,m+n})A] - l{ by x!-—N(JrW{l,Z,...,m})A]=
Bli=y 73 Mi=1

¥y -x'-y A

where (x;,...,x;,y;,...,y;) is the permutation of (x],...,xm,yl,...,yn)

that corresponds to (il""’im+n) and

v =1 8@ a {m,...,mn}) -%N(J 0 {1,2,...,mD)

=]

so that IY] <

The (1-0) confidence region for A is given by

S(xl,...,xm,yl,...,yn) = {A: (X]"“’Xm’yl""’yn) e A(A) ).

That this is indeed an interval can be seen as follows:

Let a, b Ys A and A be real values with [Y] A] < A and
(a~ A, ) < (b~ YA ) , 1=1,2, Then, because (b~ YA) - (a- A)
(Y —I)A2 + 2(a- by)A + b2 - a2 and Y -1 <0, it follows that
(a-—A)2 < (b-—yA)2 for any A with Al < A< Az.
Now consider any Al € S(xl,...,xm,y],...,yn). Then

G-%-07 < G -%" -0’

holds for A = Al for at least (m;n)_k permutations (x;,... ,x‘;,y;,... AR

n
The inequality also holds for A = y-% for all permutations and hence it
holds for all A between ¥ -X and A1 for at least m:n -k permutations

(x;,...,xé,yi,...,yé). So any A between y-X and A] is an element of
S(xl,...,xm,yl,...,yn) which yields that S(xl,...,xm,yl,...,yn) is an

interval.
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Section 9
Probleém 24.

From Problem 7 (iii) of Chapter 2 it follows that under the hypothesis

the set T of order statistics of (Z?,.
Example 6 of Chapter 4 that T is also complete. (T is equivalent to
(Zn 2 n

2. yeuesX,
Let Z = (Zl""’zn)’ ® any unbiased level o test and h

..,Zﬁ) is sufficient and from

2n . . . .
i=1 %3 i=1 Zi ), which is suggested in the hint).

r the density of
an n-variate normal distribution with mean (Z,...,Z) and covariance
matrix 021.

As in Example 7 of Chapter 2 under the alternative the conditiomal

expectation of 9(Z) given T = t is

Zo(z)h,(z")
E[@(Z)l T=t¢t]-= TR G
4
where the summation is over the 2"n! point z' € S(t) =
{(z;,...,z;) : (zaz,...,z§5 is a permutation of t}. Furthermore, as in

the proof of Theorem 3 under the Hypothesis

L, o(z").

Eloz) | T =t] = —
2"n! z'eS(t)

Therefore, the problem is quite similar to the one described in Section 8.
To carry out a most powerful unbiased test the 2%n! points of each set S(t)
are ordered according to the values of the density h

c
Since hc(z'), for fixed Z?=

2, . . . n "
i z}, is an increasing function of Zi—l zi, and

. n . .
31nceZi=1 z, is constant over the n! permutations of (z;,...,z;), the test
reduces to the following:

Order the 2" values of Z?; *Z; (almost surely there will be no ties)

1

and reject the hypothesis if Z?=1 Zi is one of the k largest values;

reject with probability vy if Zg=1 Zi is the (k+1)'th largest value. Here k
and vy are defined by k+y = a2". As in Section 8, the rejection region has
the form of the t—-test (15) of Chapter 5 in which the constant cutoff

point C0 has been replaced by a random one.

Problem 25.

(i) Let X,,...,X ,Y ,...,Y be independently normally distributed with
1 1 n

2

common variance 0% and means EXi = Ei and EYi = Eii-A, i=1,2,...,n.

Consider the following transformation:

Xi = (Yi-xi)//f, Yi = (Yi+Xi)//7, i=1,2,...,n.
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Since this transformation is orthogonal, X

independently normally distribut
EX! =
i

A/V2 and EY]!_ = (2£i+A)//Z, i=1,2,...

1,...,X Y], ..,Yé are

ed with common variance 0° and means

(cf. Problem 6). There-

,1.

fore the joint density of X',...,X' 1,...,Y; is given by
£Gx',y') = p|- 2 { I (x)- VD)2
(2mo2)™ 202 Loy
2 2
+ I (yi- (2£1+A)//§) }] =
(30) i=1]
2 - T W2 N2
= C(07,A,8) exp [5273'— iE] xi '2_07' ifl {(xi) + (Yi) } +
1 n
+ T (28,+ M) !] .
o&/2 4o 1 i
This density is of the form (1) on p. 160 with

U= g X!, T, = % {(x')z*-(Y')z} and T, = Y!
j=1 i? 0 i=1 i i i i’
i=1,2,...,n
and
2E, + A
= A = e S
= 72:37- 1.90 = 202 and t?i = 02/_2.. 9 1 ],2, ooy,
When A = 0 (or equivalently § = 0) the statistic
n '
V- U 3 Y- X
- 2142 n v N2
Vo 12- 1y \/zi=] X} -%")

is independent of T0 (see Exaﬁpl
an increasing function of U for
UMP unbiased test for the hypoth
region V > C.

In terms of the differences Wi
of the UMP unbiased test for tes

be written as

/oW

el) and of T,,...,T_. Furthermore V is
1 n

each TO’TI""’Tn’ so by Theorem 1 the
: A=

esis H 0 is given by the rejection

Yi-Xi, i=1,2,...,n the rejection region
ting H : A = 0 agianst K : A > 0 can also
> C=

Vi, o -m2 @
Under H this statistic has a t-d

so C, is determined by f &

0

istribution with n-1 degrees of freedom,
)y =
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(ii) In order to obtain the most accurate unbiased confidence intervals
for A we first consider the hypothesis H' : A = AO against K' : A # AO.
With X{ = (¥, -4, -x.)//i and Y} = (Y; - Ay +X,)/VZ, i=1,2,...,n the joint
density of XY, X" YY,
When A = AO (or equlvalently 6' =

.,Y; is given by (30) with A replaced by A-—AO.
-Ay
o?vZ

W= <>: x")/\/z‘i;1 (x'i')2

i=1

= Q) the statistic

is independent of the sufficient statistic Tb =Z?=]{(Xg)24-(Y;)2} and

Ti = Y;, i=1,2,...,n and is linear in U' = Z?=1 X;. The distribution of W
is symmetric about 0 when A = AO’ so Theorem 1 implies that the UMP
unbiased test for testing H' : A = AO against K' : A # 0 is given by
rejection region |W| > C.

Since

vn-1 |W
Vn-w?
is an increasing function of |W| this rejection region is equivalent to

jw'| > c

lw'| =

0
In terms of the differences Wi==Yi-Xi, i=1,2,...,n the rejection region

of the UMP unbiased test for testing H': A = AO against K' : A # AO can

also be written as
/H|W-AO|
>C_.
) -2 - 4
\/Zi=1 W, -W2/(a-1)
Under H' this statistic has a t-distribution with n~1 degrees of freedom,

a1 ) = 0/2.

The corresponding most accurate unbiased confidence intervals for A are

= 1 \’
w - e <
l Vh(n—]) (W W) =

n T 2
oy (W -W)

so C_ is determined by Iw t
p €1

given by

N
=
+
(@]

Problem 26.

Let U], ’UZn and V], .,Vn and V .,V2

as N(u,O ), N(,o ) and N(n,0%) respectively. Consider the hypothesis

be independently distributed

H = < E or, equivalently, H : A < 0 where A = n-£&.
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In the case of complete randomization we have

X, = U +V, i=1,2,...,n
Y= U+ Ve ©° L2,

with Xi and Yi independently distributed as N(u+£,0?+02) and N(u+€,0%+62)
regpectively. The UPM unbiased test given by (27) on p. 172 has rejection

region

Y -X)//2]a

T =
! V[}: (xi—’)i)2 + (Yi-Y)2]/2(n—1)

> .
Cl

The test statistic Tl has a noncentral t-distribution with 2(n-1) degrees

of freedom and noncentrality parameter A/\KZ/n)(O;-FOZ) .

In the case of matched pairs we have

X1 = Ui+Vi i=1,2,...,0
Y, =U 4V o i=1,2,..,
Define W, = Y. -X, =V ~V.. Then W,,...,W are independently distributed
1 i 1 n+1 1 1 n

as  (A,20%).
The UMP unbiased test given by (59) on p. 192 has rejection region
T2 = /oW 5 > C
n -W -
VErl, @ - een

2

The test statistic T2 has a noncentral t-distribution with (n-1) degrees of
freedom and noncentrality parameter A/v20%/n.
In table I the power of the two methods is given for a number of values of
n with A = 4 and & = .05 when o, = 1 and ¢ = 2, The procedure used is:
(a) Compute Ci:

In the case of complete randomization C] follows from

P{tz(n_l) >¢,} = .05.

In the case of matched pairs C, follows from P{tn >C,} = .05.

-1 2
(b) Compute the power R for the alternative with A = 4:
In the case of complete randomization the noncentrality parameter
>
z(n__l)(ln/n/lO) c,}.

In the case of matched pairs the noncentrality parameter becomes

V2n so the power is given by B, = P{tn_l(/fﬁ) > Cz}.

becomes 4vn/10 so the power is given by BI = P{t



n 81 82

2 . 33477 .24669
3 .56548 .49087
4 .72157 .69359
5 .82471 .82595
6 .89147 . 90464
7 .93380 .94911
8 .96016 .97340
9 .97630 .98634
10 . 98605 .99308
12 .99530 .99829
14 .99846 .99959
16 .99951 .99991
18 .99985 .99998
20 . 99995 1.00000
30 1.00000 1.00000

Table 1

The method of complete randomization only yields greater power for n < 4,
For larger n, the two methods are very close. )

In table II the power of the two methods is given for the same values of
n, A and o when 01 = 2 and 02 = 1. In the case of complete randomization
the results remain the same as in table I, because the distribution of
T] doesn't change. In the case of matched pairs, only the noncentrallty

parameter changes and becomes v8n.

n Bl 32

2 .33477 . 46851
3 .56548 .90794
4 .72157 .99292
5 .82471 .99961
6 .89147 ,99998
7 .93380 1.00000
8 .96016 1.00000
9 .97630 1.00000
10 .98605 1.00000
12 .99530 1.00000
14 .99846 1.00000
16 .99951 1.00000
18 .99985 1.00000
20 .99995 1.00000
30 1.00000 1.00000

Table II

155
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In the second example the method of matched pairs performs much better
than the method of complete randomization and its power tends to | more
rapidly. This is due to the fact that the method of matched pairs eliminates
the effect of the units which have a greater variance in the second example.

Values of C] and C2 for the two examples are given in the next problem.
Problem 27.

If a random variable Z has a Xz—distribution with n degrees of freedom,

then
L n/2-1 ~z/2 o1
E‘/Z=Iz%z/ze az = —2 J a2 ey =
0 24T (n/2) I'(n/2)

J3 F((n+1)/2)

I'(n/2)
In the case of complete randomization in Problem 26 the most accurate
unbiased confidence intervals for A = 1 ~ £ are given in Example 6 on

p. 178

where
n Ty 2 o 2
T &7+ I @D

2 1=1
2(n-1)

62 .2
n

and C] is determined by

o]

J

, tz(n_l)(y)dy = o/2.

The expected length of this confldence interval is given by 2C E(S)
where 52 is distributed as X with 2(n-1) degrees of freedom multlplled
by (02+0%) /n(a-1).

In view of (31) we have

2,2
01+O /E T(n——

ES =\ D T(o=1)

so ZCIE(S) = 2/§C1 /(0i+02)/n(n—1) T(n-1/T(n-1).
In the case of matched pairs it follows from Problem 26 and Example 4 on
p. 175 that the most accurate unbiased confidence intervals for A = n-£

are given by
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X, w2

n-1

=|
|
IA

o>

e

where C 0/2. The expected length of this

2

is determined by fm t (y)dy
¢, n-l
confidence interval is given by '

n =2
2Cy By (W o7 262 T(n/2)
vn(n-1) o? Jam-1y  T(m-1)/2)

in view of (31), because Z?= (wi—ﬁ)z/c2 has a Xz—distribution with n-1

1
degrees of freedom.

In table IIT the expected lengths of both confidence intervals are given

in the same situations as in Problem 26 (when ©

1

1

0, =2 and 0 = 1) with 0o = .05 and with various values of n.

=1 and 0 = 2 and when

Note that in the case of complete randomization the results for the

two examples are the same as in Problem 26. In the case of

matched pairs, the expected length is halved when going from the first

example to the second. The qualitative conclusions are the same as in

the power comparisons of Problem 26.

complete randomization matched pairs
expected expected length
n C1 length 02 O]=l,02=2 cl=2,02=1
2 4.3027 17.0528 12.7062 28.6748 14.3374
3 2.7764 9.5297 4.3027 8.8060 4.4030
4 2.4469 7.4234 3.1824 5.8641 2.9320
5 2.3060 6.3222 2.7764 4,.6686 2.3343
6 2.2281 5.6112 2.5706 3.9943 1.9971
7 2.1788 5.1011 2.4469 3.5491 1.7745
8 2.1448 4,7111 2.3646 3.2271 1.6136
9 2.1199 4,3999 2.3060 2.9803 1.4902
10 2.1009 4.1439 2.2622 2.7832 1.3916
12 2.0739 3.7436 2.2010 2.4844 1.2422
14 2.0555 3.4412 2.1604 2.2656 1.1328
16 2.0423 3.2023 2.1314 2,0962 1.0481
18 2.0322 3.0073 2.1098 1.9601 .9801
20 2.0244 2.8442 2.0930 1.8476 .9238
30 2.0017 2.3014 2.0452 1.4808 . 7404
40 1.9908 1.9845 2.0227 1.2711 .6355
50 1.9845 1.7704 2.0096 1.1310 .5655
60 1.9803 1.6135 2.0010 1.0289 L5145
70 1.9773 1.4920 1.9949 .9503 .4752
80 1.9751 1.3944 1.9905 . 8873 4437
90 1.9734 1.3137 1.9870 . 8354 L4177
100 1.9720 1.2456 1.9842 .7917 .3958

Table III.
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Section 10
Problem 28.

~1
- 1 1
Let y = (N]""Nc') .

By induction it is seen that

(32) 0

A

Ot"Pm(Z) < (l—y)m[a—wo(z)] a.e. (m=0,1,...).

In the case m = 0 this reduces to 0 < u-wo(z) < a-wo(z) a.e. which is
true since ¢0 satisfies (65) on p. 193.
Suppose that (32) holds for m = m,. Using wm(z) = wm(z') for all z' ¢ S(z)

and m € N we have

Wm0+1(z) =Y zges(z) ¢m0+](z') =
=y z}':€S(z) {¢m0(z') + [Oﬂ-\!)mo(Z')]-IA(Z')} <
< Wmo(z) + [d'-wmo(z)] =0 a.e.

by the induction hypothesis, where A = {z : ¢m0(z)<<a,¢m0(z) < a}. So by
induction the first inequality of (32) is true for m=0,1,... . To prove
the second inequality of (32) it should be noticed that, because if
wmo(z) = o then Y, ,1(z) = o and hence 0 = a - +1(2) <

mg+ . o .
(1-v) [a-wo(z)], we may restrict our attention to z with ¢m (z) < a.
If wmo(z) < o then there exists zg € 8(z) with wmo(zo) < o, and

wm0+1(2) = \PmO(Z) +y zis(z) [ot—\bmo(Z')]-IA(Z') z

v

Uy (2) + yla= vy (z0)] =

wm0<z> + YIOL“IPmO(Z)] = (1-Y)\Pm0(z) + yo. a.e.

The inequality holds a.e. by the first part of the induction hypothesis
and the second equality holds because zg € S(z). Hence a -y +](z) <
(]—Y)[a-wmo(z)] < (1—y)m0+l[a-wo(z)] a.e. by the induction hypothesis.
By induction also the second inequality of (8) is now proved.

Also by induction it can be proved that beginning with a critical ifunction
¢0 the construction provides measurable functions ¢m and wm'

From (32) and the construction of ¢m it follows that the functions ¢_ are

m
nondecreasing between 0 and 1 a.e. Therefore ¢ = lim ¢ and ¢ = lim ¢
mree m mree M



are a.e. bounded measurable functions.

lim (1—Y)m = 0 so from (32) it follows that Y(z) = o a.e. Hence
mrew

a = Y(z) = lim w (z) = lim v Z ¢ (z'
oo we  z'eg(z) T
=y Z lim ¢ (z") =v X ¢(z') a.e.
z'eS(z) mrw z'e€S(z)

as was to be proved.
Problem 29.

The formulation of the problem is incomplete because only the hypothesis
H is described. "Unbiasedness of a test ¢ of H" is undefined without
specification of the alternative.

So let H be the class of densities
H > >
{po,g(z) o <, 0, L € R}

where Py r is given by (63), c, is a given constant and R is 2 given
? .

0
bounded region containing a rectangle. In this solution we shall consider

the problem of testing H against a class of alternative densities K,

where K is such that for each o > % >0 and ¢ € R there exists a

(J)

sequence of densities Pyr € K with p(J) * Py 0,z a.e. as j »> o,

Theorem 4 is no longer appllcable because 0 and 7 are restricted and so
Lemma 3 cannot be applied.
Let ¢ be any unbiased level a test of H against K. Unbiasedness of ¢

implies
NI MO AR

for all p e H, and

0,8%
f ¢(z)p(z)dz 2 o

for all p € K.

(J) ()

Let =d
P o,z Po,z

€ H. Then there exists a sequence Py € K such that Py

0,C
a.e. as j > », Since (¢(z)-—1)p(J)(z) <0 Fatou s lemma yields

}imsupjh(¢(z)—1)péj2(z)dz < f limsup (¢(z)—1)péjé(z)dz.
Jo® 4 oo ’

The left hand side of this inequality is greater than or equal to o-1

159
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while the right hand side equals f (¢(z)—l)po_éz)dz which is smaller than
3

or equal to a-1.

Hence f ¢(z)p0 c(z)dz = o for all po’ ¢ H. Now let
b

(8
1 .
= e bR ]
¥(z) N]!...Nc! z'e€8(z) o(z"),
then
o= J ¢y  (2)dz = [ Y(2)p,  (2)dz =
- I S ¢ - 2]

for all o > <o >0 and ¢ ¢ R. Since a > <4 > 0 and R contains a rectangle,
application of Theorem 1 of Chapter 4 yields the completeness of this last

family. Therefore {(z) = a a.e. as was to be proved.
Problem 30.

Let G = {g],...,gr} be a group of orthogonal transformations ofIRN, let

¢ be an critical function and

¥(z) = 6(z) =1 I d(g ().

1

T zges(z) % k=
If (78) on p. 207 does not hold, there exists n > 0 such that Y(z) > q+n
on a set A of positive measure. By Lemma 3 there exists ¢ > 0 and g =
(Cl,...,EN) such that P{Z ¢ A} 2 1-n when Zl""’ZN
normally distributed with common variance o2 and means EZi = Ci’
i=1,2,...,N

are independently

We have for k = 1,2,...,r

P, = § I o e 2L (g ) - 5,0 -
= —rl— é](—z?];)—N— exp (-217 l&, () —gkgl_tlgl(c)lz) =
-1 1512—/?—7%5)—1“_ exp (-;;—2 g (- g '8, (2% =

r
=1 5 -———L———-exp (-—J—-lz-gm(C)lz) =P

).
¥ m=1(/21 o)V 202 =

0,8
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The third and fourth equalities hold because 8y is a linear and orthogonal
transformation; the fifth equality holds because every By BT 1532,000,1

can be written as g;]gl for some 1 ¢ {1,2,...,r}. (Take g = 8,8, )+ Hence

1 I _
%N V@)pg (de = o T I{N ¢(gy (2))p, (2)dz =

IIMH

i3 Ly 2R (g (0.

Applying the transformation Z = gk(z) this leads to

éN W(z)po,c(z)dz =:éN ¢(z)pc’c(z)dz.

n

Farther, since V(g (2)) = = Ir_| #(g g (2)) = 7 II_| (g, () = ¥(2),

m= 1,2,...,r it follows that

éN w(z)po,c(z)dz =

LRI IRTe e (- |- 8y (0| )an -
r = rY (/_— )N 1
-1 3 : ! e G) - 2y 45 =
=< 15111ij Wy ) =y ex oy 5 (D) g (0| ")z
1
- ——ee - dz
r1—1n{N“’()</ SF e Cor 18 G 0%
=L 3 G — g ew <-—‘— z-c|%yas =
T =1 N (V21 0) 202

v

@+m(1-n) > a

and hence %RN ¢(z)p0,§(z)dz > a.
This proves that (77) on p. 207 implies (78) on p. 207.

Problem 31.

Let ¢O be any level 0. test. By the preceding problem the average value of
¢0 over each set S(z) is < 0. On the sets for which this inequality is
strict, one can increase ¢0 to obtain a critical function ¢ satisfying
(79) on p. 207, and such that ¢0(z) < ¢(z) for all z. Since against all
alternatives the power of ¢ is at least that of ¢O’ this establishes the
result. An explicit comstruction of ¢ similar to the one in Problem 28

is possible.
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Section 11
Problem 32.

(i) Since the marginal distribution of X is normal with mean £ and
s 2
variance 0~ we have
Y[x

X, Y
P _(xy) | 75, " 1 [_ ! {1 52
(y) = pX(X) (2moT/1-p%)  exp E?T:SZ; ;g(x &)

- Bty g + ﬁw—mz}]/[(/z‘ﬁof‘ e {- L= 07} -

- (zm/x-p2>“‘exp[ W(y n—%x—g))z]

so Y glven x has the normal distribution with mean n+ p- —(x £) and

variance T (1— o] )

. - SN/ e N n - n 2 -
(ii) If vy (xi x) /VE (xj ) so that Zi=] vi 0 and Zi=] vy 1
the statistic R can be written as

‘- z (xi -X) (Yi -Y) ] T 24
I (x~®)2X (Y, -D2 VI ¥ -n¥?
so that
1. JAIR _ Y

/1 -R2 VIx Yg— n¥? - (z v, Y)21/ (n-2)

where all summations are taken over i=1,2,...,n.

. . . . f e . 2
The distribution of this statistic is seen to be independent of n and T
so one can assume N = 0 and TZ = 1.

Consider the following transformation:

Z g ! g Y
= — Y, = a,.
1 i=1 va i j=1] 171
n n

22 = izl viYi = El aZiYi'

Then X a2. = Z?_ az. =1and I a .a,, =0 so we can construct an
i=1 711 i=1 21 i=1 "1i721

orthogonal transformation from Y, ,...,Y to Z ,...,Z with Z. and Z. as

1°°°°°"n 1’ >“n 1 2
above.

Since Y,,...,Y given %, ,...,x_  are independently standard normally dis-
1 n 1 n
tributed, by Problem 6 we have that Z]""’Zn given Xpse..,% are inde-

pendently standard normally distributed.
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2

Because To . Y5 - n§2 - (Z? v.Y.)2 = Z% we have
i=1 i 1 = 1

\/Z?=3 ZE/(n—Z)

e aX the numerator is standard normally distributed and the

T =

Given Xpoe

denominator has a xz—distribution with n-2 degrees of freedom divided by
n-2. Furthermore both are independent, so given XpseesX T has a
t-distribution with n-2 degrees of freedom. Since the conditional dis-

tribution of T doesn't depend on x ceaXp the result also holds for the

1°°
unconditional distribution of T.

(iii) For -1 < r < 1

yn-2 R Yyn-2r
PIRsr} =P < =
: {VI-RZ /i-r2 }
n-2r
v1-r L [ 2\-5(n-1)
- Ji (n(n-2))"? ggggﬁ_ég; (1-+ éiz> dy

So p(r)=3d;p{RS ==

Problem 33.

(1) Let (X]’Yl)""’(xn’Yn) be a sample from the bivariate normal dis-
tribution (70) on p. 197 with |p] # 1.

Consider the hypothesis H : %'= A. Making a transformation Ui = AXi4-Yi,
Vi = Xi - %Yi’ i=1,2,...,n the variables (Ul’vl)""’(Un’Vn) are in-
pendently identically bivariate normally distributed with cov(Ul,Vl) =
A02 - %T% Hence the hypothesis H :-% = A is equivalent to

H: cov(Ul,Vl) = 0.

By (73) on p. 198 the UMP unbiased test for testing H against the

alternative K : COV(UI’VI) # 0 has acceptance region

___I’l___
V(l—Rz)(n—Q)
or equivalently lRl < CO’ where
n _7 _ 2602 _ g2
.. T, U D -Y) i a*s] - 83
T T2 0 2 2g2 22 _ 402
Ve, @-D2 v - /2824 s2)2 - upls

with
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& -0% 2= F -9 s.= ¥ x-DA -7
i ? i=1 i ’ : i i

2
S =
2 12745

1

I’ Mz

i=}

Under H the probability density of R is given by (80) on p. 208 (cf.
Problem 22).

(ii) Assume T = 0. Making a transformation Ui = Yi-FXi, Vi = Yi.-xi’
i=1,2,...,n the variables (U;,V'),...,(U' V') are independent and
bivariate normally d1str1buted with means EU' =n+é&, EVi =n-§& and
covariance matrices 20 (1+p)I.

Because the transformation vy = n~&, § = n+& is 1~1 onto and

(U',...,U;) and (V',...,V;) are independent (V;,...,V&) is sufficient for Y.
Hence, by Problem 7, the UMP unbiased test for testing H : £ = n (or

equivalently H : Y = 0) is given by the acceptance region
IT| < ¢

where
V' _ Y-X
o, (vI-T)7  BZesl-2s,,
From Problem 3 (ii) it follows that under H the statistic TvVa(n-1) has

a t-distribution with n-1 degrees of freedom.

Note that the test statistic T differs slightly from the test statistic

given in the problem.

(HSU (1940), MORGAN (1939), PITMAN (1939))

Problem 34.

(i) Make an orthogonal transformation X' = AX, A = (aij)’ i,j=1,2,...,n
such that anj = ;%;,,j= l5...,n and apply thz same transformation to
Y : ¥Y' = AY. Now we have the orthogonal transformation

() (20
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1
Yl

as the of § . Therefore the pairs of variables (XI’YI)"°"(Xn’Yn) are

independently bivariate normally distributed with the same covariance

By orthogonality it follows that the covariance matrix of (X ) is the same

matrix as that of (X,Y) and with means

a,.t = v/ng .2 a,

;4 i 1janj =0, i=1,2,...,n-1

T™MB

EX. =
g

0, i=1,2,...,n~1.

and similarly EYi

. n 2 _on 12
By orthogonality Zi=l Xi zi=l (Xi) and hence
n - n . n n—1
T X -D2= 3 2-a% =1 @Di-ani= @)?
i=1 % i=1 1 i=1 1 n i=1 1
and similarly
— 2 n=l 2 n _ _ n-1
T (.- = ¥ (D and T x.-X@E.-Y) = T X!¥!.
= 1 ]'_=] i=1 1 1 i=1 11
So we have
n-1 n-1 n-1
- % (x!)z, sg = (Y!)2 and S, = X!y!.
1 i=1 i i=1 i 1 j=1 11

Since (X',Y') = /n(X,Y) the result follows.
n’ ' n

(ii) Following the hint we see that

2 2 _
P{S]2 < 312’ 82 < s2 I Xl""’xm} =
_ 2.2 2 2 _
= P{s]ZI S sy, (85-2]) +2] < 8} | Xyseeex J =
-1, 2 2
S1958 -
= (S1282 ((857% 2
S (JO £, (y)dy) dx

where £ and xi_] are the density functions of Z1 (standard normal) and
S;-—Z1 (chi-square with m~1 degrees of freedom) respectively.

Therefore the joint density of S12 and S% given XpseeesXy is given by

2
2 -2, _ Si2:5208

2
S15,55|x - -
12552 2, _ -1 1.2 .2 _

P (s)5085) = 5y £(s 8,700, (5= 87,5,

The last equality holds because the conditional distribution depends on the

x's only through sf. The joint density of S?, S12 and Sg is therefore

found by multiplying the above conditional density by the marginal density
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2 . . 2,
of Sl’ which is Xm'

S%’SIZ’Sg 2 -2
(5758155) = Xo(e7)s) laGs 58 0y (55197 ) =
1,22 2 d(@m3) » 2 _ 22
) {{AFT(m n} (SISZ'-SIZ) exp { (s + 52)} for 7, 5575,
0 elsewhere.

(iii) If X',Y") = (Xi,Yi;...;XA,Y&) is a sample from the bivariate
normal distribution (70) on p. 197 with £ = n = 0 then

= @, apirl xyLm® (ap?) s sufficient for 8 = (0,0,1) and
the probablllty den31ty of (X',Y') can be written as ge(t).

Now for any Borel set B we have by Lemma 2 of Chapter 2

Pe(B) = P {(X",¥") ¢ T (®)} = J £ (T (x,7))dxdy =
1 (B)
= {_](B) 800 (T(x,) 8o (T(x,7)) /gg (T (x,y)) dxdy =

- (X',Y") -
= 'JI"_I(B) ge(T(Xsy))/geo(T(x,Y))dPe (X9Y) =

T
é HOUINOLZNOR

From part (ii) we know that Pfl 0,1) is absolutely continuous with respect
LA ]

to Lebesgue measure so that for all ©

Po(E) = By o 1) (E)gg(E)/B(; o 1y (®)

where pg is the density of Pg with respect to Lebesgue measure.

Using part (i) with m = n-1 and part (ii) it follows that

T T, 2 2
Po(t) = pg(s]s8,,,8,) =
2.2 _ 2 3 (n-4) 2
_ s sy . {_ 1 ( 1 _ % s
AﬂF&rQ)(GT/]—pz)n—l 2(1-p?) 2 ot T
if sfz < s?sg and pg(t) = 0 elsewhere.

Problem 35.

Let (Xl’Yl)""’(Xn’Yn) be a sample from the bivariate normal distribution
given by (70) on p. 197. As in the preceding problems let

X

N

)
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2 _¢n _5 2 _sn - _F 2 _¢n _T2
$7 =X, % -X7,8,=2_ &-X)@ -1 ads; =2 _, (-1 The
joint density of S], S12 and 52 is given in Problem 34 (iii).

2
The sample correlation coefficient is defined by R = 812//82183 so the

joint density of (S?,S;,R) is given for r2 <1 by

22 222 i(n-4)

(slsz—r 5152) s% Zp/szlszzr

s 52}] 762
- P2 O 1N
4T (n=2) (oTV1-p) ! eXp[ 2(1-p%) {02 ot T2 ]V81%5

2

9 * This density

because the Jacobian of this transformation equals /s?s
equals (for r2 £ 1)
z(n-4) $(n-3)
(-r%)’ (s7s2)" s2 g2 w orvs2s2\k
et ot B () -
41T (n-2) (01/1-p2) ™! 2(1-p%) o T kI \ot(1-p

Integrating with respect to s2 and sé gives the marginal density of R:

1

2 %(n_[*) o

(-r’) 5 < pT )kL x
47T (n-2) (01/1-p2)" ! =0 \ 0T (1-p?)
w00 2 2
1 )51 EZ}
* éée}(p[ 2(1-p2){02+"c2

(l—rz) i (n-4)

L(pn— [
](S%)z(n 3+k)(sg)z(n 3+k)ds]ds2 _

(/l_p;z)n-lzn-] x

41T (n~2)
oo k [ X o)
(201) - 1 (n=3+k) _
X k)=:0 X J(;{)exp{ u, uz}(uluz) duldu2 =

2 l(n-4) 0 k
- (-r7)° _p2yi(a-1),n=3 ¢ (2pr) " 2 -
Ta=3) " (1-p%) 2 oo K T'” (3 (n+k-1))
for rz £ 1, which was to be proved.

To see the equivalence of (82) and (83) on p. 210 we expand

1 C® a=D...(@tk-2), _k _ ° T(a+k~1) (prt)"
—g L o rt)” = T T ~ &
(1-prt) k=0 k=0
so that
] n~2 1 i (n-3)
| ——— /“l* R = /—é— du =
0 (1-prt) 1-t 0 (1-pr/u) I-u



168

du =

_}°° %(p I (n+k~1) 2(n+k—3) 1
o kI TG View

© k
-z 4Ll B8 (@i, -
=0 .
y Tk (en)* Ty (n+k—1)1’(1)
k=0 = T@ D k! T (] (0+k)
2, o7 T (i 1))T () i) (n)* TG @-1TQ)
-0 T(n-1) k! T(§(n+k)

°z° J+k—3 I‘Z(%(mk—l)) (pr?k
=0 I'(n~1) k.

! g
The fifth equation holds because TI'(2x) = (2m) 222x éf(x)T(x+%) and the
last equation because I'(}) = /T.

Substituting this expression in (83) on p. 210 yields the required result.

Making a transformation t = ll-v we have
-prv
1 n-2
t 7 ey de =
0 (1-prt) I-t
- ? (l—v)n—2 (I-Drv)n~1 (1-prv) pr-1 -
1 (=prv)™ 2 (1-pr)™ ! /(2-prv-v) (v-prv)  (1-prv)?
- } 1 (l—v)n_2 1 dv
0 a-prP 32 Vv V1-}v(1+pr)
o k k
1
Using the expansion _1 - 5 PékTZ) A <l+pr)>
] Vi-jv(i+pr) k=0 [(2) kI 2
this equals
) k1
1 T(kt)) 1 (1+pr )2k
77 5T Az ) L ammT v ey
(1-pr) k=0 . 0
_ (-1 1 73 3 LUed) TGerd) Tamh) __1_(1+pr>k
T'(n-1) (]_pr)n—B/Z %=0 T}y T&) T(o+k-1) k! 2

Substituting this expression in (83) on p. 210 yields the required result.
Problem 36.

If X and Y have a bivariate normal distribution given by (70) on p. 197
with p > 0, then Y given x has a normal distribution with mean

n + pTG—](x—E) and variance Tz(l-pz) (cf. Problem 32).
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Let YX denote the random variable Y given x. Then it follows that the

. s . . -1 .
distribution of Yx' is the same as that of Yxi-pTO (x'-x). Since p > 0
we have for x < x' Yx' stochastically larger than YX and hence X and Y

are positively dependent.

REFERENCES

ANDERSON, T.W. (1958). An Introduction to Multivariate Statistical Analysis.
Wiley, New York.

CHAPMAN, D.G. (1950). Some two-sample tests. Ann. Math. Stat. 21, 601-606.

GIRSHICK, M.A. (1946). Contributions to the theory of sequential analysis I.
Ann. Math. Stat. 17, 123143,

HSU, C.T. (1940). On samples from a normal bivariate population. 4dnn. Math.
Stat. 11, 410-426.

LEHMANN, E.L. (1947). On optimum tests of composite hypotheses with one
constraint. Ann. Math. Stat. 18, 473-494.

MORGAN, W.A. (1939). A test for the significance of the differece between
the two variances in a sample from a normal bivariate population.
Biometrika 31, 13-19.

PAULSON, E. (1941). On certain likelihood ratio tests associated with the
exponential distribution. Ann. Math. Stat. 12, 301-306.

PITMAN, E.J.G. (1939). A note on normal correlation. Biometrika 31, 9-12.

STEIN, C. (1945). A two-sample test for a linear hypothesis whose power is
independent of the variance. Ann. Math. Stat. 16, 243-258.






171

CHAPTER 6

Section 1
Problem 1.

Let G be a group of measurable transformations (bijections) of (X,A).

Suppose that T : (X,A) + (T,B) is such that:

(i) T is a measurable transformation from X onto T;

(ii) for all g € G, for all X 5%y e X

For all g € G define g* : T+ T, by g*T(x) = T(gx).

We will first show that G*= {g*| g € G} is a group of measurable trans-
formations of (T,B). By assumption (ii) and since T(X) =T, g* is a well

defined function. Moreover g* is a bijection. To see this, we notice that:

(a) for all x,y € X
g'T(x) = g"T(y) = T(gx) = T(gy)
= T(g™lgx) = T(g lgy), (by assumption (ii))
= T(x) = T(y),

(hence g* is injective)

(b) for all z e T

z = T(y) T(gx) = g*T(x), for some x,y € X,

(hence g* is surjective).

Let G] be the group of all bijections from T to T. Define ¢ by

PG> G1
g g*.
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Since G* = ®(G) and since ¢ is a homeomorphism, ¢ is a group. (That @ is
a homeomorphism follows from the fact that for all 8128y € G, and for all
T(x) e T
= * = -
0(g8,)T(x) = (g;8,) T(x) = T(g,8,%)
* %

= 8,T(gyx) = g]8;T(x) = ©(g)0(g,)T(x). )
Now we show that G leaves pT invariant, whenever G leaves {Pe, 8 ¢ Q}
invariant (i.e. for all g € G: g0 = Q). It is tacitly assumed that for all
81,82 € Q

91 #+ 62 =¢Pe] # Pez

(otherwise g0 is not uniquely defined). However this does not imply that

6] # 82 = Pg; # Pg? (e.g. if T is a constant function, then all Pg are the
2

same). Let Q* be a subset of  such that for all 6 in Q there exist pre-

cisely one 8% in O with the property
"if X has distribution Pe then T has distribution Pg;"

(the existence of such a set Q¥ follows from the axiom of choice). Now we

have
{pg, 6 ¢ 0} = {Pgu, 8% c 0%},
LAk * % * T T
for alil 61,62 e Q 61 # 62 = PG? # Pez.

It remains to show that for all g* ¢ G* we can define a function
g 1 O > 0% such that

(a) if T has distribution Pg;, then g*T has distribution PL;G*,
g
(b) g = o,
Let T have distribution Pg;. Then for all B ¢ B
P{g*T ¢ B} = Pox{8*T(X) € B} = Pox{eX « By} =
_ -1
= Pge*{x eT "(B)}.
Hence, if we define g* by

§¥e* = e**’
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*% . . * .
where 0 is the unique element in &' with the property

"if X has distribution Pge* then T has distribution Pg;*";

. . . . - *
then the first requirement (a) is satisfied; and moreover: Eyﬁ* c Q.

Conversely, if 6"* ¢ 0 then 0% = g¥6*, with 8" = (g_l)*e** as is

easily seen. This proves that g*Q* = Q.
Section 2.
Problem 2.

(i) Let T(x) = (sgn xn,xl/xn,...,xn_l/xn). T is evidently invariant under
G. If T(x) = T(y) then sgn X = sgny, and hence Xn/yn > 0. Since T(x) =
T(y) also implies that Xi/xn = yi/yn for i=1,2,...,n~1, we have x = cy,

with ¢ = Xn/yn’ and hence T is a maximal invariant.

(ii) Let x,x' € X. Let f be a function which satisfies the conditioms
stated in the hint, and which in addition maps Ij one to one onto Ij. Then
f e G and f(x) = x'. So for each pair of distinct points X, there exists

a f € G which maps the one onto the other. Hence G is transitive over X.
Problem 3.

(i) Let D be a normal subgroup of G. Since s is maximal invariant, the

equality S(Xl) = s(xz) implies X, = dx1 for some d € D. Since D is a

normal subgroup there exists for all e € E an element d' ¢ D such that

ex, = edx] = d'exl. By the invariance of s w.r.t. D it follows that

s(exz) = s(d'ex]) = s(ex]).

(ii) We first show that the subgroup D0 of translations x' = x+b is
normal. Let d0 € D0 be given by x' = xd-bo, and let g € G be given by
x' = ax+b. The translation dé € D, given by x' = x-+ab0 satisfies

= 4
gd0 dog.

To show that the subgroup D] of transformations x' = ax is not normal,
let d1 €D, be given by x' = 2x and let g ¢ G be given by x' =2x+l. If D,
is normal then there exists a transformation d{ €D, given by x' = a'x

such that gdl = dig, i.e.

4x+1 = a'(2x+1), for all x.
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Since it is impossible to choose an a' satisfying this condition, D1 can

not be normal.
Section 3

Problem 4.

Define ¢ : lR2 +1R2

(ny) B (z,v) = (Y‘X,Y).

Since the Jacobian of this transformation equals one, the joint probability
density of Z = Y~X and Y is equal to f(v-z,v). Hence Z has probability
density

+c0
f f(v-z,v)dv.

-0

h(z)

. +00 . s
Since L@) h(z)dz 1, h(z) is finite a.e.
Problem 5.

(i) The invariance of the testing problem is established‘easily. It
follows from the argument on p. 217 that a maximal invariant is given by

(Zl""’zn—Z)’ with
z; = (xi-xn)/(xn_l-xn), i=1,2,...,n-2.

By Theorem ! we may restrict attention to tests depending only on

(Zl""’Zn—Z)’ with
Zo= (g =X)/ (X =X), i=1,2,...,0-2.

Defining W and Y by W = Xn_l-Xh, Y = Xn and expressing Xl""

functions of Z],...,Zn,w,Y we find that the density of Z]""’Zn—Z’W’Y

,Xn as
satisfies
g(zl LR :Zn__z,W,Y) =

= JulP2 L (FEE VZp-*¥ 7t yiw-E  y-E
w = 5 yeoos 5 , 5 s 5 .

The marginal density of Z],...,Zn_2 is thus given by
+00 4
g(zl,...,zn_z) =f g(z],...,zn_z,w,y)dwdy =

—00 —00
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400 400 +00 $00
= [ [ g()dwdy + [ [ g(-)dwdy.

Applying the ttransformations (%,}’_'eﬁ> + (w,y) and (%,%) + (-w,~y), and

using the fact that f is even we find
400 400

-2
gz, 5...52 o) =2 J’ J Wn f(wz +y,...,wz__,+y,wty,y)dwdy.
1 n-2 lo D 1 n~2

Since this density is independent of & and 8, the testing problem is

reduced to the testing of the simple hypothesis f = f, against the simple

0

alternative £ = £ . By the Neyman-Pearson lemma (Chapter 3, Theorem 1),

1
the most powerful rejection region is given by

40 2
f W f] (Wz +y,...,wz o*y »W+y,y)dwdy
Ze i n-

400 ©0

>cf | wn_zfo(wz +Ys oo sWZ oty WHy,y)dwdy.
—00 0 1 n-
The result now follows from the substitution z, = (x,-x)/(x -x ),
i 1 n n-1 n

i=1,...,n-2; and from the transformations w = (x

-x Ju = vx_+ u.
n~-1 n) > ¥ n

(ii) Let W denote the nx k-matrix whose (i,j)-th element is given by wij'
. ~ ~ ~ A 1]

Write x,%,B,Y for (xl yeoe ,xn)', (xl yeos ,xn) , (Bl yees ,Bk)', (Y1 ye oo ,Yk)

respectively. G is the group of transformations x ¥ X, given by ¥ = x+ Wy,

Y e]Rk.

A). We first assume that W has full rank k.

Let W1 denote the (n—k) x k-matrix, consisting of the (n-k) first rows of W.
Let W2 denote the k x k-matrix consisting of the k last rows of W. Without
loss of generality, we may assume that W2 is nonsingular. Given a vector

- 1 . N 1
x (x] sene ,xn) we will write x(]) ’X(Z) for (xl,.. . ’xn—k) and

(Xn—k+] yeoe ,xn)' respectively. We will use the shorthand notation
X
we (Y.
*(2)
We first show that a maximal invariant with respect to G is given by

t(x) = x(]) - Ax(z),

where A is a suitable (n-k) x k-matrix.
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Let X = x+WY. Then we may write
§=(ﬂw>= (0*Wﬂ>
X2y X2y * WY
t will be invariant if and only if WlY - AWZY =0, for all v ¢ Rk. This
condition is equivalent to

_ ~1
A= wlwz .

* . * *
= .e. - = - . P
Now sgﬁpo:e that t(x) t(x™), i.e X(l) Ax(z) x(]) AX(Z) ut
Y = W2 (X(Z) - x(z)). Then we have

* - 3
X2y T Xy T WY
* - _* - = -
X1y TRy T AG(g) T x(gy) = AWy = Wy,
SO
X1y = X1y * Y-

It follows that t is maximal invariant. By Theorem 1 we can restrict

attention to tests depending only on

-1
Xy ~ Wy Xigy

- A
= Ty, nT )"

T = X

Then density of T will now be derived. Put Y = X Then we have

(X(1)> i (T +w]w51Y>
X (2 Y

(2)°

The Jacobian of this transformation equals one. Since the density of
(Xl""’xn) is given by f(zl,...,zn), with z = (zl,...,zn)'= x - WB, the
density of (Tl""’Tn—k’Yl""’Yk) is given by

h(tl,...,tn_k,yl,...,yk) = f(zj,...,z;),

with

(Z?|)> _ (t +W1W£1y-W]B> _ (t"'wl [W;IY— 6])
z?z) y-WZB Wz[ngy-S] .

The marginal density of (Tl""’Tn—k) is given by
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400 400
= .o 0w * *
g(tl""’tn—k) = f f f(z],...,zn)dy]...dyk,

-0 0O

. Y . 1 .
with z* as above. Transforming to the new variables u= (ul,...,uk) given

by
= w_l - 8
u 5 ¥~ Bs
we get
400 400
gltyseeent ) = ldet(wz)l_fo;.i) £(z,0 0520 du) . duy,
where

"
(Z(l)> _ (t+W1u\
"
2(2) qu /
The density g does not depend on (Bl,...,Bk). Thus the testing problem
is reduced to the testing of the simple hypothesis H : g = &g against the
single alternative K : g = 8- By the Neyman-Pearson lemma (Chapter 3,
Theorem 1), the most powerful rejection region is given by
+© +o0 " "n
I_m... f_w f](zl""’zn)dul"'duk

+00 00
) I fo(z'l',. .. ,z;)du]. --du

(n

> C,

with z" given as above. In terms of the original variables, the rejection

region is also given by (1), but now

" _l
(z(])> ) (X(l) _WIWZ X(Z) +W1u>
z(z) qu

Transforming to new variables 6= (51,...,6k)' given by S = W;lx(z) -u, we

get (for i=0,1)

400 400
! " " -
_{O_fw fi(zl,...,zn)dul...duk-—

(2) +oo o
= "m "
C_{o"'_{» £,(z]" ... 28, .. .48,

where ¢ is some constant and
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(3) CE;;) - CE;; ::;z) = (x-Ws).

The desired result now follows by substitution of (2) and (3) in (1) and

replacement of & by B troughout.

(B). If W has rank £ < k, then via a linear transformation

(Bl,...,Bk) H'(BT,...,B;), the density of (xl,...,xn) can be written as
L £
f(x1 -z v BY cesX = X w*.BT),

TS BRI A I} b

where W* = (wzj) is an nx f-matrix which is explicitly known (as a function
of W). It follows from (A) that in this case the most powerful invariant

rejection region is given by

400 $o0 P * kg Lok *
Lﬁ)..“Lw f](x1 z wlij,...,xn >X wnij)dBI"°dB£ .
+oo +eo - * ok _ * ok gk * :
Lo Lo £ox, D R Z w,B)dBY.. .48}

(It should be noticed that this rejection region is most powerful in-

variant w.r.t. the group of transformations G* : x ~ x+ WY, v* e'RK.)
Problem 6.

For convenience of notation, we will write A for the ratio T/0. let AO'
be positive. We are dealing with the testing problem: H : A < AO vs

: > .
K: A AO

(i) Let @ be a test which is invariant with respect to G. Denote the
ordered variables by X(l) < 4. < X(m), and Y(]) < .. < Y(n). Since

ElO(X 500 0hX 07,0000 ) | x(’),...,x(m),y“),...,y(“)] =

~1
= (m!n!) by w(xi],---,Xim,Yj],---,an),

where the summation extends over the m!n! permutations of (x ,...,xm) and
1 . . .
(y],...,yn); Elo(+) | x( ),...,x(m),y(l),...,y(n)] is also an invariant

test which has the same power function as ¢. The transformation

U =mX(l); U, (m—i+1)[x(i)—x(i_l)], i=2,...,m,

1 i

= (D,
Vst yov,

#

(n-j+ @ -yU-Dy i=2,...,n,

0
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is one to one. Hence attention can be restricted to invariant test based

on-U,ye.e,U ,V, ,...,V . Now it will be shown that attention can further be
1 m’ 1 n

restricted to invariant test based on the sufficient statistics

Since U,,...,U and V,,...,V_ are independent random variables, following
1 m 1 n

. . . . s -1 -1 .
an exponential distribution with parameters O and T respectively

v ""’Vn) and

(Chapter 2, Problem 13), the joint density of (Uz,...,U sV,

the joint density of (T3,T4) are given respectively by

f(uz,...,um,vz,...,vn) =

0—(m—l)T—(n‘1) exp (- 7_- u. /O’ - ): V /1) u,,v. = 0;

i=2 j=2 i3
n-2
g (@1 -(n-l) 3 Yy
g(t3’t4) (m_z)' \I‘l 2)' eXP( t /0 t /T)’
tyt, = 0.
Suppose that ¢ is an invariant test based on Ul""’Um’Vl""’Vn' The

conditional expectation of @ given (TI’TZ’TS’TA) = (t],tz,t3,t4) satisfies

*
¢ (t] :tzst39t4) -

ELO 50 e U,V 5eeesV) | T, =t

ELQCE, Uy 5 e e 501ty s Vpsee s V) | T, = ty,T, = t,] =

2°° 374
g o m—1 n-1
=f[... w(t],uz,...,u _1°ty T u, $2EsVosee —l’t4_-z v.)
o 0 " i=2 "n j=2
e m-1 n-1
(u,, ta- 1>_22u 3Vpsene ,vn_l,t4~j§2vj)]/g(t3,t4)
« du du__.dv

greedu 2...dvn_1 =

=1 n-1
- Y (D) ! - -
(n=-2)!1(m-2)! f ... f [(p(t],uz,...,t3 1§2u 2EysVpsennst, 322 vJ)

t;(m_z)tz(n_z)]duz...dum_ dv,...dv

1 n-1°

. . . . m-1 n-1
<
(the last integration is on the region Zi=2 i € t3, Zj=2 vj <t

The group G induces the group G] of transformations given by

u

8-

v L. v L
Tl = aT]-Pbl, T2 aT24-cl, T3 aT3, T4 aTa.
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It is easily seen that invariance of ¢ w.r.t. G implies invariance of w*
w.r.t. G]. Moreover ¢ and w* have the same power function. This proves that
attention can be restricted to tests which depend only on (TI’TZ’TS’TA)
and which are invariant w.r.t. Gl’
A maximal invariant w.r.t. G1 is given by Z = T4/T3 (Example 6). By
Theorem | attention can be restricted to tests depending on Z. Since
2T3/0 and 2T4/T are independent randem variables, following a X2~dis—
tribution with 2(m-1) and 2(n-1) degrees of freedom (respectively),

Z - o(m-1)/[1(n-1)] has an F-distribution with 2(n-1) and 2(m~1) degrees
of freedom. Hence the density of Z equals

n-2
c(a)
(z+h)

For varying A these densities constitute a family with monotone likelihood

T
> ==,
mwn-2 ° 0, A g

ratio. Hence among all invariant tests of H there exists a UMP invariant
test given by the rejection region

, T, ) T [Yj-mln (Yl""’Yn)]

T3 b3 [Xi-mln (Xl""’Xm)]

(ii) In order to construct a UMP unbiased test we first note that attention

can be restricted to tests based on the sufficient statistics T T ,T,,T

3°74
(Chapter 5, Problem 22). Under 6 = (£,n,0,T) the joint density of
(TI’TZ’T3’T4) is given by
- » m-2 n-2
(o) = o, (_ t mE ) t,-nn ) ty _ t4 ty ta
9 *® A\ o T o (@-2)7 (0-2)7 °
where t = (t],tz,t3,t4) satisfies tl > mE, t, 2 nn, t3 20, t4 > 0.

Now it will be shown that the power function of every test is continuous
(then Lemma 1 of Chapter 5 will be applied). Let {0. } = {(E URLE )T )}

[ =

be a sequence of parameter values such that llm 6 = (E ,nO,OO,TO)
Let 6 = m1n(OO,T )/2. For all j large enough we have' |£ -E | < 8,

In -nol < g, IO -0, < 6, IT -t I < 8. Hence t ZmE,J 1mp11es

ol

_ tl—mEj .- tl—mEj . tl-m(£O+6) L t]-m(go—é) 2mé

oj oro+6 00+6 00+<S o‘o+6

Moreover, if t1 > mEj then t:1 > m(&o—G). Therefore, if ¢ is some critical

function, then
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o, +6y T +8
) 0 <0(1)t0 (1) < £ (1) 5 (GE_GF(T;’_J exp (225 4 230 pce,

00+6 o +6

where 8 = (Eo—é,n0—6,00+6,T0+6). Since the right hand side of (4) is
independent of j and integrable w.r.t. Lebesgue measure, application of

the dominated convergence theorem yields

lim Eg @(T) = lim | @(t)fy (t)dt = [ o(t)fg (t)dt = Eg O(T).
jre 7] it i 0 0

By Lemma 1 of Chapter 4 the problem of finding a UMP unbiased level o test
is reduced to the problem of finding a level o test which is UMP among

all similar tests.

We make the following one to one transformation: Sl = Tl’ S, = TZ’
53 = T4/T3, S4 = T3-+T4/AO. Under 6 = (£,n,0,0A) the joint demsity of
(81,82,53,54) is given by

ge(s) = ge(51552’53,54) =

_ w2 g™ (on™® { 1"mg__sz"“”}
0 @-2)! (o-2y7 &P G ok
m+n~3 n—2( A )—m—n+2 e {%S4AO(S3+A)}
S, 83 %3%% *P ob(sy+8 )

where s > mE, s, > nn, $q 20, s, 2 0., Similarity of a test ¢ means that

for all 6 = (E,n,O,OAO): f w(s)ge(s)ds = o, or equivalently

{0 expl-

o 1 < s ]—mE
mf

>h(s];n,o)ds1 = 0
where

(o -1 sz—nn
o} 0) exp OA k(sl,sz,o)ds

o0
h(s;3n,0) = f
nn
o m+n—3
J
0
[+ 4]

O-(m+n—2) s

s
o) = S )
k(sy58,30) = @rm-3)7 °*P ( cx)ﬂ(sl’sz’sa)dsa’

(m+n 3: —m-n-+2
s y5p58,) = f“’(s]’Sz’Ss’Sﬁms o yr1g) ™ s .
From the completeness of the class of exponential distributions with un-
known starting point and fixed parameter o (Chapter 5, Problem 12(i)),

it follows that for all n and ¢ there exists a Lebesgue null set A(n,o)
such that
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sy ¢ An,0) = h(s;3n,0) = a.

Let {(n,,0;) | i € N} be a countable dense subset of]RX]RS. Define

A= U°i°=1 A(ni,ci). Then A is a Lebesgue null set such that h(s],ni,ci) =
for all s 4 A and all i € N. Since h depends continuously on n and o
(see the proof of the continuity of Ee(p(T)), and since A is a dense subset

of R X]R;, we have

h(sl,n,G) = g for all s ‘% A and all (n,0) € ]RXIRS.

Applying the completeness argument once again we find that for all s % A,

for all o ¢ ]RS there exists a Lebesgue null set B(sl,G) such that
s, ¢ B(s;,0) = k(s,s,30) = o.

Using the continuity of k w.r.t. O we arrive at the following statement:

for all 8 * A there exists a Lebesgue null set B(Sl) such that
k(sl,sz;c) = o for all s, % B(sl) and all o > Q.

Applying now the completeness of gamma distributions yields the following
result: for all s ¢ A, for all Sy % B(sz) there exists a Lebesgue null
set C(s],sz) such that

s, ¢ C(s]-’82)=>£(51’82’s4) = q,
Define
vV =AxR xR,
+
5 = {(51’52’84) | s ¢ A, s, € B(sl), s, €<R },
53 = {(31,32,54) | s ¢ A, s, ¢ B(s,), s, € C(sl,sz)}.

Then «C(s],sz,sa) = o for all (91,32,54) ¢ V] U V2 U V3. Since V],VZ,V

are Lebesgue null sets on R X R x R we have

3

T (m+tn-3)! ,m~1 n-2 -m~n+2 _
(5) g@(sl,sz,s3,s4)mﬁo S3 (S3+A0) ds3 =0, a.e

We have shown that similarity of a test implies (5).

Now let (AI,E,H,O) be an arbitrary (fixed) alternative (A1 > AO). The

power function of a test ¢, at this alternative equals
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(6) c ofo }oq(sl,sz,SA,O) exp (‘—S'%IE'—S%-EII—H>~SIZ+H_3d34dSZdSI,
mé nn O 1
with
< (m+n-3)! ,m-1 n-2 -m-n+2
(7) a(s;58,55,,0) =({ w(sl’52’33’54)'(5—_2')!—(—~n~2)1A0 sy (s4+hg)

_84 AO s +A]>
exp ( 7;'25-?;§;55 dss.

If a test wo satisfies (5) and maximizes q for each fixed 8158958, (among
all tests satisfying (5)) then certainly wo has maximal power at the
alternative (A],E,n,c) among all similar tests. A test wo with this )

¥

property will now be constructed.

The problem of maximizing (7) w.r.t. (5) is identical to the problem of

finding (for each fixed 8158 4) a most powerful test of level

28
o - exp(-s,/0) for the simple hypothesis A = A  against the alternative
4 0

A= A]. By the fundamental lemma of Neyman and Pearson (Chapter 3, Theorem

1) it follows that the test

1 S3+Al >
(90(51352353934) = Y(A190951932354) if —_S;_:A_O = k(A190951s52;34)
0 <

(where Y and k are such that (2) is satisfied) exists, and maximizes (7)
subject to (5). Since -(s3+A])/(s3+A0) = —1-—(A1—A0)/(s3+A0) is an

increasing function of s, when Al > AO’ the test ¢ can be written as

3

1 >

®0(51’52’83’54) =4y if z = $q = k'
0 <

Since {z = k} is a Lebesgue null set, Y can be taken zero. The number k'
is given by (5). Since the test wo does not depend on the particular
alternative (i.e. not on Al’ nor on 0), it is uniform most powerful among
the tests satisfying (5), i.e. it is UMP unbiased. It is identical to

the UMP invariant test of (i).
(iii) To extend the results of (i) and (ii) we restrict our attention to
1 . i i- .
U] = mX( ), Ui = (111--1.4-1)[){(1)--){(1 ])], i=2,...,r <m,

and
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vV, = nY(I), Vj = (n-j+1)[Y(j) —Y(j_l)], j=2,.0.s8 <,

1

and proceed in the same way as we did in (i) and (ii). Observing that
r . T .
I U = (m-r)[X(r)-X(])] + 3z [x(l)—x(l)]
i=2 i=1

we arrive at the following two statements

(i)' for testing T/0 < AO against T/0 > AO there exists a UMP invariant
test w.r.t. G and its rejection region is given by
(n-s)[¥(®) -y(Dy o z§=1 y) -y (D

b

T >C
(@) [x - x (D7 4 =, x) _x (g
(ii)'this test is also UMP unbiased.

Problem 7.

We take as our sample space the set

X =IR2n\ {(xl,...,gn,yl,...,yn) PXp =X S...=x oory =y, = .= yn}.
Suppose T is maximal invariant under G. By Theorem | attention can be
restricted to tests depending only on T. By Theorem 3 the distribution of
T depends on 0 = (E,Oz,n,Tz) only through a maximal invariant v(8) w.r.t.
G. Let ' = v(Q). The family of possible distributions of T can be written
as PT = {P$ : Y € I'}. Let I(T) be a sufficient statistic for Y. For every
invariant test Y(T) there exists an invariant test wo which depends on T
only through Z(T) and which has the same power funcfion as Y(T)

define
by (s) = EY[W(T) | 5() = s].

Hence we can restrict attention to those tests which depend only on I(T).
A statistic XZ(T(X,Y)) with T(X,Y) maximal invariant under G, and I(T)
sufficient for v(8) (as above) will now be constructed.

n

Define S(x,y) = (i,Z? 5

i=1 (xi-i)z,?,z =1 (yj-§)2). S is sufficient for
(E,cz,n,Tz). It is easily seen that
for all g € G: S(x,y) = S(x',y") = S(g(x,y)) = S(g(x,y))

((x,y) stands for (x],...,xn,yl,...,yn)). Hence S induces a group GS on

S(X) =R x ]Rg xR % ]R;. Gs consists of the transformations
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(51,32,53,54)v+ asl+b,azsz,as3+c,a234,a # 0,b e R,c ¢ R,

. 2 2
(s],s2,53,sa) v as3+b,a 5,,38 *c,a"s,,a # 0,b ¢ R,c ¢ R.
A maximal invariant w.r.t. GS is given by
W(sl,sz,s3,s4) = max(sz/sa,s4/s2).

This can be seen as follows: if W(sl,sz,s3,54) = W(s;,sé,sé,si) then
= al/al = al/a! s -
sz/s4 sz/s4 or 52/54 34/32. In the first case (51,32,53,54)

g(si,sé,sé,sz) where g ¢ G, is defined by

S
~ e o o ~ 20 o~ 2.
8(8,,%,,%,5,8,) = (a8 +b,a"¥,,a8+c,a 8,5

]

with a = (sZ/sé)%, b=s,-as! and ¢ = s -as ;. The second case can be

1 1 3
treated similarly.

Condition (C) of HALL, WIJSMAN and GHOSH (1965) (see the remarks in the
solution of Problem 11), is easily verified here. Hence W(S(X,Y)) can be
written as L(T(X,Y)), where I and T are as above, and attention can be

restricted to tests depending on W.

Let A = T2/02. The testing problem is equivalent to H : A =1 vs
K: A# 1. Let

52/02
F = = AS,./S,.
2 2" 74
SA/T
F has the distribution F (Chapter 5, Section 3). The cummulative

n~1,n-1
distribution function of W equals

H(w;A) = P{max(A/F,FA) < w}, (w=1)
P{Aw < F < wh}

R(wd) - K(A/w),

i}

where K(x) = f; k(y)dy, k(y) = Cny(n_3)/2/(1 w7,

Cn = F(n—l)/[T«n—l)/Z)]z. Hence the density of W equals
nwsd) = ¢ AT/ 2@ D21y ™y gy,

Let f(w,A) = h(w,A)/h(w,1). Since —%5—(W,A) =
(-1 /AP D201y Q™ 2[ (A+w)™ = (Awt1)™] > 0 for all A > 0;

f(w,A) is for all A > 0 a nondecreasing function of w (w = 1).
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Let A1 # 1 be an arbitrary (fixed) alternative. By the fundamental lemma
of Neyman and Pearson the test which is most powerful at the alternative
Al is given by f(w,A]) 2 k, or equivalently by

ka*.

Since this test does not depend on the particular alternative it is UMP

among all tests depending on W, i.e. UMP invariant.
Section 4
Problem 8.

Let p be the probability of an item being defective. We consider the

testing problem H : p < Py Vs K:p> Py

(i) Inspection of the item by variables

An item is considered satisfactory if a variable Y exceeds a given constant

u. Hence p = P{Y < u}. We assume that Y .,Yn constitute a sample from

1o
a normal distribution. The UMP invariant test rejects when

t = AF-w/{E G -DH @) <,

where C satisfies [Eng(t)dt==a. g(t) is the noncentral t-density with
n-1 degrees of freedom and noncentrality parameter —vﬁf¢—1(p0) (see
Section 4). For given n,Py,0 we can calculate C. For an alternative p the
power of the test, B(p) is then given by Li)g](t)dt, with gl(t) the non-
central t-density with degrees of freedom n-1 and noncentrality para-
meter - ﬁ§¢;](p). Since the UMP invariant test is based on all the
observations YyseersYs the power B(p) is nondecreasing w.r.t. n. Hence
the sample size required to obtain power B is the smallest n for which

B(p) 2 B.

(ii)

(a) Inspection of the item by attributes

Each item is classified directly as satisfactory or defective. The
number of defectives D in a sample of size n is distributed as b(n,p).
The UMP test rejects H with probability one when D > k, and with proba-
bility vy when D = k; Yy and k satisfy



o n) i n-i (n) k n-k _
i)=:k+1<i Py (1-pg) * Y\ ) Pol —pp) = O.

The sample size required to obtain power B is determined analogously as

in (i).

(b) Sequential probability ratio test

Let EP(N) denote the expected sample size under p. By Section 11 of
Chapter 3, EP(N) is approximately equal to

{B(p) Log (B/o) + [1~B(p)]log [(1—6)/(1—a)]}/Ep(z),

where
E,(2) = plog (p;/py) + (1-p) log [-p/ -],
B(py) = ;5 B(p)) = B.
Table 1, Numerical results for & = .05 and B = .9.
required sample sizes expected sample size
sequential test
inspection by inspection by Ep (N) Ep (N)
variables attributes 0 I

p0=.1; p1=.15 237 433 183.0 194.2
P, = .20 69 132 54.4 53.5
P, = .25 34 69 27.5 25.7
Po=-05; py =10 134 267 111.4 115.0
P, = .15 44 93 39.3 33.8
Py = .20 24 51 21.2 17.0
P, = .25 16 35 13.8 10.6
p0=.01; pl=.02 390 1519 639.3 607.2
P, = .05 55 209 80.6 57.5
p =10 21 65 28.0 16.4
pl=.15 13 43 16.1 8.6
p = .20 9 25 11.0 4.0

187
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Problem 9.

(i) Since the time N of the first violation of the inequalities

< . . -
Ay pél(t],...,tn)/Pgo(tl,...,tn) < A satisfies p(gi{N < ®} =] for
i=0,1, the same arguments as those on P. 98 can be used to prove (34)
of Chapter 3.

%

(ii) Define y(x) = (yl(X),---,yn(X)) by y;(x) = x;

and t(x) = (tl(x),...,tn(x)) by t:1 = sgn x

-1 N
k [Zk <x } x|+. . .+Xk>2 3
i=1 j k

Let Y = y(X) and T = t(X). Then

19

o

IA
o

-
il

f P6{Xl > 0,%, < y,X,...,X Sy X [ X, = x}g(x)dx =

nl
=Of PG{XZ < yzx}...P6{Xn < ynx}'fa(x)dx,

where f6 is the density function of X, under §, and similarly

PelY, = -1,¥ Y sy }=

IR CIIEREL SR A

0
=_{°P6{X2 < _Y'ZX}"'PG{Xn < —ynx}fé(x)dx =
=({ PsiX,) < yox}.. PeiX <y x}Eo(-x)dx.

This means that the density hé of Y w.r.t. u* = ux )\n—l’ where U is

. n-1 , n~-1 . .
counting measure on Z and A is Lebesgue-measure on R s 18 given by

T n-1 o
ho(1,yy,-005y ) = | x fs(x) - 'g £5(y;x)dx,
0 1=2
and
T -1 n
hé(_]:yzs""yn) = j X fé(‘x) ‘I—-[Z f&(yix)dx9
or 0 =
_ C n-1 1 __
h(s(yl"-~’yn) "‘(_)[ ]'.E] fd(}’ix)dx =
©° - -1 n
(8) = | &N 0/T) M exp [-(20%) 7! I (7%~ 60)*ax
0 1=
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for vy, = £l, -® < y9,.0.5Yy < @, Putting w = xc-l Z?=1 yi and z, =
-1
{Zz=] yi}'{22=1 y%} 2 we find after some computations that

n
n _n
ha(yl,...,y ) = [Zﬂ izl yi} zexp [—(62/2)(n—z§)]-

n
T n-1 2
-f W exp [-i(w-86z )" 1dw.
0 n
Since
ny ~ nx _
%y T 2. 2.3 2. _.2.% *
[Sn(y) +n(y)"] [Sn(x) +n(x)7]
1
_1V12
) t S (x)[n/(n-1] . tn/ﬁ
- 2 298 P
[s (02 + @S ] [n—l+t2}
n n-1 n
= _ 1l ¢n = _1en 2 _ _ =82 2 _
where 7 = E'Zi=1 Vs X =4 Zi=1 Xy s Sn(y) = Zi=1 (yi ¥)© and Sn(x)
Z?=] (xi-i)z, it follows that
2
2 _ "t _ _n(-1)
pTZ T RT 2 - 2
n-1+¢t n-1+¢t
n n
Hence

2
6‘/ -
he(yyseeesy)) = cly -5y ) exp [—%— Lovm) (a-1) 1)] .

2
n-1+¢t
. ] t_8/n 2 "
. fwn exp [——(w— 2 >]dw,
2 2.1
0 (n—]+tn)

where ¢ is independent of 6. Comparison with (76) of Chapter 5 yields
that hG(yl""’yn) = c(yl,...,yn)-pé(tn(y],...,yn)), where p is the
density function of the non—central t-distribution with n-1 degrees of
freedom and noncentrality parameter 6vn. Now by the factorization

theorem Tn = tn(Yl""’Yn) is sufficient for § on the basis of Y]""’Y .
Since (Tl""’Tn) is a function of (Yl""’Yn)’ it follows that Tn is
1,...,Tn (cf. Problem 10 of Chapter 2),

which is equivalent to the statement we have to prove.

sufficient for 8 on the basis of T

(iii) Making the transformation v = Gx_] in (8), we obtain that

B (y)enesy,) =

|
O 8

- -1 — — n -— -
" 1v1 n(oJfﬁ) nexp[—(zcz) I.Z (yicv 1—50)2]0v 2dv

1=1
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(v/f%)_nexp[—(sz)—]‘gl(yi-év)z]v_ldv.
i=

il
oOv— 8

writing v = w|x1[—1 this becomes

hd(yl"":yn) =

o _ n _
= [ (w/2m) n[xllnexp [—(sz) ! =z (xi—Sw)z]w 1dw,
0 i=1
which implies the required result.
(ARNOLD (1951), RUSHTON (1952))
Problem 10.

(i) We take as our sample space the set

X =r" \V{x .,xn) PXp =X, = oL..= xn}.

1

We write x for (Xl""’xn)' As in the solution of Problem 7 we can restrict

attention to tests depending on a statistic Z(V(X)), where

(a) V is maximal invariant under G,
(b) the distribution of V depends on (5,02) only through V(E,GZ)
where v is maximal invariant under G,

(¢) Z(V) is sufficient for v.

(G is the group of transformations: x & cx (c # 0).) The statistic I(V)

will be constructed as in the solution of Problem 7.
Define
S:X+Rxmg
- b -2
x b (s,(x),8,(x)) = (%, i£1 (%, -%)7).

Clearly S(X) is sufficient for (E,Gz).

Since for all g in G: S(x) = S(x') = S(gx) = S(gx'), S induces the group
. + 2

of transformations GS on R x ]Ro, where G, = {gs : gs(sl,sz) = (cs] sC SZ)’

S
c # 0}. A maximal invariant under Gq is given by Isll//gz.

Since condition C of HALL, WIJSMANN and GHOSH (1965) (cf. Problem 11) is
satisfied it follows that ]81[//55 = |x|/(z (xi-i)2)£ can be written as



Z(V(X)). Hence attention can be restricted to tests depending on

T = (n(n—]))%- |i[/(z (Xi';i)z)%-

Write 6 for £/0. The testing problemAis equivalent to H : 6 = 0 vs

K : ® # 0. The density of T is given by: pé(t) + pd(—t), t > 0; with

8 = v/n6, and pg as on p. 223. Now it will be shown that the ratio

r(t) = [Pa(t) + p6("t)]/[p0(t) + po(-t)] is an increasing function of t
(on the interval t € (0,°)). Since pO(—t) = po(t), r(t) =

%[p6(t)/p0(t) + pa(—t)/PO(-t)]. The substitution v = t(w/(n—l))% in the
integral of pa(t) yields

«

pG(t)/pO(t) = exp(—éz) -g exp(élv)gtz(v)dv

with g ,(v) as on p. 223, and £(v) = exp(--vz/Z)-vn_l (i.e. £ as
t
on p. 223, but with 60 = 0). Since ps(-t) = p_é(t) we have

r(t) = 4 exp(-62/2) [ [exp(8v) + exp(—&v)]gtz(v)dv.
0

That r(t) is monotone on t ¢ (0,») follows now from the argument at the

bottom of p. 223,

Hence for any particular alternative 61, the most powerful test depending
on T is given by the rejection region T > C. Since this test does not -
depend on 61, it is uniform most powerful among the tests depending on T,

and hence uniform most powerful invariant.

(ii) We take as our sample space the set

Write x, y for (xl,...,xm), (yl,...,yn) respectively.
As in (i) we will construct a statistic X(V(X,Y)) with the properties
(a),(b),(c). (Now G consists of the transformations (x,y) ¥ (ax+b.ay+bh),

a €]R0, b € R.,) Define S by

S=X+Rxmoxmg
(x,y) b (sl(x,y),sz(x,y),s3(x,y)) =

= (%, %5, |% yl/[zi=1 (%, -%)° + T (yj Nl

191
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S induces a group of transformations Gs on R X ED XZRS given by G

g (SI’SZ’S ) = (as +b asz,s3) a EIRO,b e R}. S, is a maximal

.
{gs
invariant, because for a11 31,32,53,51,32 we have (51’52’33) =

gO(s],sz,s3), with gy given by go(s3,sz,s3) = (asl+b,asz,s3); a= sé/sz,

b=s!

l—as

1

Since condition C of HALL, WIJSMANN and GHOSH (1965) (cf. Problem 11) is
— _ _ — 9.1

satisfied S = IXx-Y|/[= (Xi--X)2 + 3 (Yj-—Y)z]2 can be written as

Z(U(X,Y)). Hence attention can be restricted to tests depending on

2

re [Z-TAE om0 s @D s br@en-

Write & for (n~&)/0. The testing problem is equivalent to H : 86 =0
vs K ¢ 8 # 0. The density of T is given by: pG(t)-+p6( t), t > 0, with
§ = 6/( + —)7 and Ps the density of a noncentral t-distribution with
m+n—2 degrees of freedom and noncentrality parameter §. In (i) it has
been shown that the density of T has monotone likelihood ratio. Con-
tinuing as in (i) yields: the UMP invariant test for testing n = £ is

given by the rejection region T > C.
Problem 11.

In many problems of this chapter, concerning normal distributions and
groups of linear transformations, a sufficiency reduction precedes a
reduction through invariance. From a theoretical point of view the
reverse order is the correct one.

HALL, WIJSMAN and GHOSH (1965), however, proved that under certain
conditions the final result is independent of the order chosen.

As an example, we will check Assumption C from section II.7 of their
famous paper, which guarantees that (with their notation) the subfield
ASI is sufficient for AI’ which is a reformulation of the assertion in

terms of o-fields. We quote:

Assumption C. X is an n-dimensional Borel set, A the Borel subsets of X,
P = {Pe,e € 0} with © an arbitrary index set, and with respect to

n-dimension Lebesgue measure Pe has a density
) Pe(x) = ge(s(x))h(x), x € X,

in which s is a measurable function from X into k-space (k < n) with
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range S, &g and h are positive, real-valued measurable functions on §, X,
respectively, and s and h satisfy the conditions below. Let G, AS’ AI and
A 1 be as in Section 3 and suppose that there is an open set ASI € ASI of

S
P-measure 1, such that on A

(i) for each g € G tgz transformation x > gx is continuously
differentiable, and the Jacobian depends only on s(x),

(ii) for each g ¢ G, s(x) = s(x') implies s(gx) = s(gx'),

(iii) s is continuously differentiable, and the matrix D(x), whose ij
element is stlaxi, is of rank k,

(iv) for each g € G, h(gx)/h(x) depends only on s(x).

In our problem

X={<§) = (;:y}%‘) : x;,y; € R, i=1,...,n} (= 2),
n

where we suppose (without restricting generality) that the xfs (resp. y{s)
are not all equal and that x and y are linearly independent (then we can
take ASI = X). Note that PG{X and Y are linearly independent} = 1, for all
® (cf. Problem 24 of Chapter 7).

Let A denote the (induced) borel o-field.

P = {PG : 6 ¢ 0} with

6=1{8= (g,T’I,O’,T,D) : E,T] €eR, 0,T >0, p ¢ (_1a+1)}’

where Pe denotes a probability measure which has, with respect to

2n—-dimensional Lebesgue-measure, density

R 1 1 2
pa(x,¥) = (2m0TY1-p2) - expd~———— | —= T (x, - E)" +
° { 201-p%) [02 t

—%}-_ (Xi‘g)(yi“ﬂ) +TLZZ (Yi_n)z]} .

Take

sGoy) = @IV (e - BV (0, -9 T Gy Ry D) =
= (t],tz,tB,t4,t5).
To check (9) remark that
|

2 2
Pa(X,¥) = C(8)exp {———Jz————(t +nt t,) - ———=(t, + nt’) +
8 OT(l—pz) 5 172 202(1_02) 3 1
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— (Pant?y - (& _mp 1_(n _%

- (ty +nt>) - ( - >nt + ( - >“tJ
2T2(]_02) 4 2 l_pz o2 OT 1 1_pz 2 OoT

= C(e)ge[s(x,Y)]-

From this relation it follows that h(x,y) = 1, hence condition (iv) is
trivial.

Let G1 be the group of transformations from part (i) and G2 the group from
part (ii). Then

ax+b

¢ cy+d

;= lg ety = ( >, a>0, c>0} and

G

2 {g : 8(X,Y) = <2§:g>, a * 0, ¢ # 0}-

Since Gl c G2 it suffices to check conditions (i) and (ii) only for G2.
Condition (i): the g's are continuously differentiable with a constant
Jacobian.

Condition (ii): suppose that s(x,y) = s(x*,y*), where

Ky eooX x* %%, . .x*
b4 1 n 1 n
| and W) = NE
v/ Ay ey
*

*
y YooYy
Denoting s(x,y) = (tl""’tS) and s(x*,y*) = (tt,...,t;), we have t, =t

>
i=1,...,5.

Since
s[g(x,y)] = s(ax+b,cy+d) = (atl-*b,ctz-fd,la]t3,|c|t4,act5)
and

slg(x*,y")1 = (at]+b,ct + d,[alt;', lele),ace),

condition (ii) is immediate.
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Condition (iii):

X s Lo 2@x-mt] 0 7,¥ |
le Bxl n 1 3 1
ot ot ) .

1 5 1 oy 1 -
5 e 5 0 2(xn x)t3 0 Y,y

D(x,y) = =

ot ot
1 -5 1 —5y¢ ! -3
Byl veee 371 0 n 0 2(y1 Y)th *x X
ot ot 1 )
1 5 1 5y ] -5
ayn cene ayn 0 o 0 Z(yn y)t4 x X

Since the five columns of D(x,y) are linearly independent (this is the
reason that we have restrict:dNthe X-space), this matrix is of rank 5.

Hence condition (iii) is satisfied.

Conclusion: when in search for a UMP invariant test, we may reduce the
observations first to the sufficient stftistic S = s(z,z) =1(T1,T2,T3,TA,TSL
vhere T, =X, T, = ¥, T, = £ (5, -©}, 1, = £ (7,-D%? and

T, = (xi—i)(yi—i‘).

This reduction induces a new sample space

T = {(tl,tz,t3,t4,t5) tt.>0,t, >0, ltsl < t3t4}

3 4

and groups of transformations GT

T
1 and GZ’ where

T
Gy = {g: gt ,t,y,ta,t,,t:) = (at +b,ct,+d,aty,ct, ,act ),a> 0,c > o}

and

T
Gy=1{g: g(t],tz,t3,t4,t5) = (at +b,ct,+d, |a|t3, [c|t4,act5) ,

a¥0,c#0}.
(i) With respect to Gf, r(tl,...,t5) =‘t5/t3t4 is a maximal invariant:
I s s = X pRLF * = L
Clearly r is invariant and if t5/t3tA t5/t3t4, then th = atg, t; = ct,

* o = g*e-l o *eT -
and*t5 gits, where a - t3t3 and c t4t4 . Hence r(tl""’tS)
r(tl""’tS) implies (tl,...,t;) = g(tl,...,ts) for some g ¢ G?.
R = r(Tl""’TS) = TS/T3T4 equals the sample correlation coefficient.

We will now show that R has a density (w.r.t. Lebesgue measure) pp(r)
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with monotone likelihood ratio in r. By (85) of Chapter 5,

- - - - —n+d
po(r) = B2 L) (1pP) HOTD) (4 ) HO) gy et

1+0r,
* F(%:%’n-%’ Zpr)’

where

T(atj) T(b+j) T(e) xJ
o TG T(b) T(e+i) 37

(o]
F(a,b,c,x) = R
j=

is a hypergeometric function and Ipr| < 1.
We must show that, for CH > 0y ppl(r)/ppz(r) is a nondecreasing function

of r.

PROOF.

- —ntd I+o,r
po @ =D g ™ w (), gy, 1)

Pp, (™) (,_pg)%<n—1)

F(%,%,n—%, 7

(l~pzr)

First remark that, given pl > Py>

1-p,1 n—%
<]_plr>

is an increasing function of r, since nn-% > 0 and

> 0.

d (1'Ozr> _ P1TH
I \Tp,T) = )
T (1-p ;)

Hence to show that pp(r) has monotone likelihood ratio in r, it suffices

to prove that, given p1 > pz,
1+p,r
(4 h0m1, 2 000)

1¥p,r
F(%,%,n_%s 22 >

is a nondecreasing function of r, or, equivalently (cf. the solution of

Problem 6 (i), Chapter 3), that

1+pr
2

2
(10) —ggs;rlog F(3,4,n-4,22P5y > 0, for all p and r.

To prove this inequality, note that F(%,%,n—%,ltfr) can be written as
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11 I=pry _ 3 3
(]1) F(i,i,l’l_i, A )" .Z C-(]"'DI’) )
J:O 1
where
F(§+j)]2 Ta-y) . _1 .
.= . e 0 = > 0.
3 [T(%) T'(n—3+j) zJj!’ J
Remark also that ¢ = I and that cj+1 < %cj, j 2 0, since
i+l _ [r<%+j>]2 DGy 205
Cj I-‘(2"'3) 1-‘(ﬂ"}'%"':l) 2]+](j+1)1
ISNCE LIS SN L% LY SR
2(n-1+3)(5+1 2 . . 2°
=G 2 32 e + (e

From (10) and (11) we get, with t = l+pr,

2 (o) ) —2 o« . s
3—55%12 = [ b c.tl] c et (-5 - (-3
Por i=0 jri=0 11

Changing the roles of the indices i and j we get

8210gF - [

©0 . —2 oo o, .
i . j+i-2.. CanaZ e aNas
S05r T cjt ] JZ cjcit [i+ (e-1)i (e-1)ijl.

j=0 j,i=0

Hence, since

L5+ (=132 = (e=1)ji+ i+ (e-1)i% - (e-1)i] =

= -1 G- - (1D ],

we get

c.c,eiti72

I ooyt LG e ¢ ()]
»J=

= c.t

32 1logF 1 [ ® i]2 @
2. ¥ . ¥
o093 2 i=0 1 i

Hence it remains to show that the last factor is nonnegative. Remark that

it is greater than

i i-2 2 Jrpe_sn2 .

(12) 2 % c,t I et [(G-1)7(e-1) + (+D)],
i=0 1 j=i+1

since terms with i = j were deleted in (12).

The coefficient of tJ in the interior sum of (12), which is given by

A

= e -G e T+ e GRimD,
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is nonnegative. Indeed, from Cj < > 1, it follows that

'zlcj_] ’ j

(13) ani) > c.[—(j-—l)2+ (A+§) +2(G-1-1)21 = c.[(j—i)2+5i-—3j +2]

(1) _ (J~1) +5i~3j+2, then (as can be shown easily) for any
(1) z(1)

}J =i+ o i+l =2i 2
20 (J 2 i+1), Now (13) 1mp11es a 20 (j 2 i+1), so that (12) is

Define a.

fixed 1 {a is a nondecreasing sequence with 3 2 0. Hence

~(1)

nonnegatlve and as a consequence (3 logF)/(BOBr) 2 0, as was to be proved.

Now by Theorem 2 of Chapter 3, there exists a UMP invariant test with

rejection region R > C for testing H : p < Po against K : p > Poe 0

(ii) Clearly Ir(t “eests )| = |t /t3t4| is Gg—invariant To show that

|t /t3t4| is maximal Gz—lnvarlant, suppose that |t /t = |t§/t;tz .

If t /t =t /t3 4 there exists a transformation g € G1 c Gg with

g](tl,...,t ) = (t ...,t*) by part (i).

Therefore suppose that t /t 3t = -t /t3 4

Take a = t't -l and ¢ = —tZtél. Then a > 0 and ¢ < 0, and t5 = acts,

t; = |a|t3 and t, = |c[t4. Hence there exists a transformation g, € Gg
_ * *

such that gz(t],..,,ts) = (tl""’tS)'

It now remains to show that the test with rejection region ]R] > C is UMP
within the class of invariant tests for testing H : p = 0 against K : p # 0.
Remark that the density qp(r) of |R| is pp(r)d-pp(—r) for r € [0,1) and ©
elsewhere.

We now show that

(14) for r € [0,1), the ratio qp(r)/qo(r) is a nondecreasing

function of r.
Since po(r) = po(—r), the ratio in (14) equals

95 () pp(r) +pp(-r)

13 @ T

1(1 p )2(n l)F(z’zsn"z9%)_]{‘(1'pr)~n+%F(%:%’n—%,lnzpr) +

+ (1on) ™M (Y, ) l%—)] -

c(p?,n)[6(pr) + 6(~pr)1,

where ¢(p%,m) = (-9 @ gy 104,107 > 0 and
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—_+1 —n+l 3
6(6) = -0 "L 04,0 = (e TR e e, £ e 1L,

Observe that

G'(t) = (l—t)_n—%[(n-%) ; c.(1+t)j + (1-t) 5 jc.(l+t)j—1] =
jno ] j=1 J

[} . o0 . _é
[(1-t><1+t)]‘“‘%[(n—%> T e (T (hn (e T e, (eIt 2] =
j=0 ] j=1 J

_y=1 m 5 1 o P 1
(1-t%)™ 2[(n—%) T oe () L (1¢?) 5 e, (1) 2] )
j=0 3 j=1 J

Hence

26(pr) + G(-pr)] = ple’ (or) - €' (-p)] =
= p(l—ozrz)-n_%{(n~%) ,;0 Cj[(1+pr)j+n+% - (l—pr)j+n+%] *
J=
o . 3 sen3
+ (1-p%r%) z jcj[(1+pr)3*“'3 - (1-pryJ™ 2]} :
J=

Suppose p 2 0. Then 0 < pr < 1 (r = 0). Hence (]+pr)Y > (l—pr)Y, for
any Y > 0. It follows that é%[G(pr)d-G(—pr)] > 0 when p = O.
By symmetry, this inequality also holds when p < 0.

Hence G(pr) + G(-pr) is nondecreasing in r. Now (15) implies (14).

Finally, consider any fixed alternative Po # 0. Then the most powerful

test depending on |R| for testing H ¢ p = 0 against K0 1P =0 rejects
when |R| 2 C. Since |R| is maximal invariant and since the test does not
depend on the particular alternative chosen, it is UMP invariant for the

original testing problem.
(ANDERSON (1958)).
Problem 12.

The requested powers are computed from tables in DAVID (1938).

Table 2. Power of the test for the hypothesis p < fo* (@ = .05).
n significance level (po = ,3) power for p = .5
50 .50 .51
100 45 .75

200 .40 .96
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Section 5
Problem 13.

We have to check the conditions of Theorem 4 in the case of Problem 6(1)

and Exahple 6.

In both cases the sample space X equals Efﬁn, while the group of trans-
formations G is given by {(a,b,c) : a > 0; b,c ¢ R}, where (a,b,c) : X > X

is defined by

(a,b,c) (xl e ,Xm,yl R ’yn) =

= (axl+b,...,axm+b,ay]+c,...,ayn+c).

Let A and B be the Borel 0-fields on X and G respectively.

The function h : XxG + X defined by h(xl,...,xm,y],...,yn,a,b,c)
(ax1+b,...,axm+b,ay]+c,...,ayn+c) is continuous and hence for any set

A € A the set R-](A) =

= {(xl,...,xm,y],...,yn,a,b,c) :(a,b,c)(x],...,xm,yl,...,yn) ¢ A} ¢ AxB.

Finally define a measure Vv over G by

V(B) = K(B_l), for all B € B,

1

where £ is the Lebesgue measure and B =1{b: b-l

€ B}. For any
g = (g],gz,gz) € G and any B ¢ B we have Vv(Bg) = K(g—lB_l). Writing

g as (g’;,g;,gg), the set g 'B ! is given by

=1.-1 _ * Kk %k . -1, _

-1
= {(g7b;,87by*87,87by+8}) + (b ,by,by) € BT ),

Since g_lB“1 arises from B—1 by multiplication of each codrdinate by the
fixed number gT, followed by a translation over the fixed vector
(O,g;,gg), we have: Z(B_]) =0 = K(g—lB—l) = 0, and hence also

v(B) = 0 = V(Bg) = 0.
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Section 6
Problem 14.

Let the testing problem be © ¢ H vs 8 ¢ K. Denote by dO’dl the

decisions "6 ¢ H", "B € K" respectively. Define the loss function as

follows
0 if 6 ¢ H,
L(G,do) = {
1 if 8 € K;
0 if 6 ¢ K,
Loy - |
1 if 6 ¢ H.

For all g ¢ G define g* by g*do = dO’ g*d1 = dl'

Every test ¢ defines a decision procedure in the following way: given X = x,

decision d1 is taken with probability ¢(x).

Let C be a class of tests which is closed under a group of transformations
G. The C is also a class of procedures which is closed under G in the sense

of Problem 5 of Chapter 1.
Let ¢0 be an a.e. unique UMP member of C. Since for all 6 ¢ K
R(8,00) = 1 = Egld)(X)]

we have that ¢0 uniformly minimizes the risk within the class C. Hence

by Problem 5 of Chapter 1 we have for all g ¢ G:

bo(8x) = ¢,(x) excepts for x € Ng’
where Pe(Ng) = 0, for all 6. It follows that ¢0 is almost invariant.
Problem 15.

For any test ¢, let ¢g be the test defined by (¢g)(x) = ¢(gx). It follows
from (1) of Chapter 6 that

By(8) = Egglo(0] = Eolo(em)] = B, (8),
for all 6 and g.

If in particular 6 € S(a), and 6 ¢ QH then

b . -
?MW?&W e
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B¢g(9) = By(88) < a

(8 € QH implies that g6 ¢ QH’ by the assumption that the testing problem
is invariant under G). Hence if ¢ ¢ S(a) then ¢g ¢ S(a) for all g ¢ G,

and since G is a group we have for all g ¢ G
¢ € S(0) & dpg ¢ S(a).

As a consequence sup (6) = sup B¢(6) and hence:

B
og~les(a) $eS(a)

By(0) = sup  B(E®) = sup B, (6) = sup

By(8) = £,(0).
9e5(a) ¢S (@) ¢g”1es(a)

Problem 16.

(i) The equation {Af(x)dPe(x) = ngf(g—]x)dPge(x) is a generalization
of equation (1), of Chapter 6, as is easily seen, by setting £ = 1. It is
a consequence of Lemma 2 of Chapter 2 take T = g—l : (XL,A) > (X,A),

= = *=
g=f, u P§6' Then by (1) u Pe.

(ii) Suppose Pe is absolute continuous with respect to Peo Let
Pge {X ¢ A} be equal to zero. Then, by (1), Pe {gX ¢ A} = 0, and hence
Pe {gX e A} = 0. Applying (1) once more we f1nd P“G {X € A} = 0. This

shows that P—e is absolute continuous with respect to Pgeo
Furthermore, for all Aec A
dPe -1
f i (x)dPe (x) =Pg {X cg A} = P, {X e A}, (by (1)),
g 1A 0 1 &Y%
dPzg >
g9, .
= [, 0 = [ =SL(gde, ), by ().
A dPgeO geo g‘]A dPgeo geo >

This proves the second assertion of (ii) (since A = {g_lA | &4 e AD.

(iii) When X is distributed as Peo, then gX is distributed as P e . Hence

(iii) follows from the second result of (ii).
Problem 17.

(i) Let g € G. Let du/dug_l denote a fixed version of the Radon-
Nikodym derivative of | with respect to ug_]. Then for any measurable set

A and any 6 ¢ Q we have by Lemma 2 of Chapter 2
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du
dug™!

£ pge(gx) (gx)du(x) = é; pge(y)-giiéT-(y)dug_l(y) =

g; Pro(MAH(Y) = Prg(gh) = Py(a) = i P (M au(y).

du
dpg™!

(ii) In order to avoid difficulties with division by zero we use as a

Hence pe(x) = pge(gx) (gx) a.e.(U).
definition for the likelihood ratio

- 8?5 Pe(x)/ggs Pg(x), when 825 pg(x) > 0,
%) =

0, otherwise.

(This definition is commonly used, cf footnote on p. 15; moreover, if

A is almost invariant then so is 1/A.)

We first note that sup p,(x) and sup p,(x) are measurable functions. This
Bey O 865 6

follows from the countability of w and 2 and can be seen as follows
for all c eR ¢ {x : sup pa(x) £ c} = N {x : pa(x) < c}.
3k Fo Bef 6
Define the measurable set A by
A= {x : sup pa(x) < 0}.
xeb 70
Then we have for all 6 € Q

Po(4) = i Pe(x)du(x) < 0; i.e. Py(a) = 0.

For any fixed g ¢ G, let hg be a fixed version of , and define for

all 6 € Q

_dp
dug™!

Née) = {x : Py (x) # pge(gx)hg(gx)} u {x : hg(gx) < 0}.

It follows from (i) that u(Née)) = 0 for all 8. Hence Née) is a Pnull
set for all 8 ¢ Q, Put N = Ay { U N(e)}. N is a P-null set (by the
g geq & &

countability of Q).

Suppose x % Ng' Then by invariance
sup p{x) = sup [p_.(gx)h (gx)] = h _(gx) - su (gx);
8eb Fo 50 'Pgo(Ehg(80) g & " Gk Po'E

su (x) = h (gx) - sup (gx).
Bews ©O g8 " gup (8
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It follows that A(x) = A(gx). Hence XA is almost invariant.

(iii) Because ) is separable there exists by definition a countable subset
DO € 2 that is dense in Q. Hence, by the continuity of pe(x) w.r.t.
8 for all x
sup py(x) = sup pg(x).
GEDO Befd
)

*
Assume that there exists a countable subset D] < W such that for all x

sup pn(x) = sup po(x) a.e. (u).
eeDl 0 few O
For any fixed g € G, let hg be a fixed version of ——fﬁéT—, and define
dug
D= U §(M) and B = U F®,).
& neZ ° g neZ ]

Dg and 5g are subsets of {} and w respectively (by invariance of Q and
w with respect to G); moreover Dg and D are both countable. Since

2>D o DO and since sup pe(x) = sup pe(x), for all x, we have
g Bef BeDd
sup pe(x) = sup pe(x).
6efd GeDg
Define Ngl and Ng2 by

Ngl = {x : 825 Py(x) < o} u {x : hg(gx) <0},

Ngz Gng {x : pe(x) # pge(gx)hg(gx)}.

Then for all x outside N ., u N
gl g2

su (x) = su (x) = h _(gx) - su ~~(gx)
665 Po ) Geggpe ) g® ) GEBg pge g
= hg(gx) -ggg pe(gx), (since 8 eDg @ ghe Dg’ by the

g definition of D );
(a) &
= h (gx) * su (gx).
g & 965 Po'é

Since w o Bg =] D] we have for y-almost all x

*) This assumption is satisfied if Q is a separable pseudometric space

(see Lemma 1 of the Appendix).
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ggg Pg(x) = gz% Pg(x).

g
Define Ng3’ Ng&’ Ng5 by
N . = {x : sup pa(x) # sﬁE Palx)}
g3 Bew 6 0eD ®
g
N, = {x : sup pglgx) # sup pe(gx)}
g Bew eDg
N5 = egﬁ {x : pg(x) # pge(gx)hg(gx)}.
g
Then for all x outside N ., U N , U N , UN
gl g3 gh g5
sup pe(x) = sup pe(x), (since x % N 3);
Bew eeDg g
= hg(gx) -gz% pge(gx), (since x % Ngl U Ngs);
g
(b

= hg(gx)- 225 po(ex), (since x ¢ NgA).

1
and the almost invariance of A (and 1/A) follows from the equalities

(a) and (b).

It is easily seen that u(U? N ,) = 0, Hence U?_ N . is a P-null set
i=] “gi i= gi

Problem 18.

Let ! be the parameter space. §) = QH u QK’ where

ol o 1-20 1-200 2n+1
QH={<H,...,E, e R s ,OL)}CIR s

and

P Pp n-1

QK = {(T"'.’T’O’...’O’ n ) : pi 20, is= I,...,m,

p. = l} C]RZnH.

"M

i
Furthermore G = {gO""’gn-l} where & is the rotation of the plane by the

angle 2km/n. Since both Pl""’Pn and Ql""’Qn are equidistant points on

a circle with centre 0, it follows that

p,}
1

b,
b,

Pe{gk(X,Y) Pe{(X,Y) =

Pk (mod n)

Pole (5,0) = Q) = P {(x,Y) = %t (mod 1)

Ple, (X,0) = 0} = P{(X,1) = 0}.
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Hence gke =6 if 6 ¢ QH, while

g0 =

(pl-k(mod n) pn—k(mod n) n—l)
k b

o seee o ,O,...,O,-—n—
if
p P n-|
6 = <T1""’—$’0’."’O’T> € QK.

Therefore the testing problem remains invariant under G.

The rejection region R of the level a likelihood ratio test consists of

these points (x,y) for which

ggBKPe{ (X)Y) = (xs}’)}

L(x,y) = > C,

sup Pe{(X’Y) = (x’}')}
OEQH

where C is such that Pe{L(X,Y) > ¢} £ o, for all 8 € QH.

é, L(Q,) = 0 and L(0) = PE?&]“ we have L(Q,) < L(0) = L(.),

for i,j = 1,...,n. Since moreover Pe{(X,Y) € {Pl""’Pn}} = qa, for all
6 € » we see that R = {P_,...,P }. Hence the power of the level a likeli-
1 n

Since L(Pi) =

hood ratio test equals (for all 6 ¢ QK)

Po{(X,¥) € (P ,...,p }} =1,

Now let ¢ be any invariant test. Then w(gk(x,y)) = (x,y) and hence both
w(Pi) and w(Qi) are independent of i. Hence the power of ¢ equals

n Py n-1 n-1
iEI @(®;) c tw(0) = @B /n o+ 0(0) -
To determine the level o UMP invariant test, we have to maximize this
last expression subject to

1-200
n

o 2= Sup Eew(X,Y)
eeQH n

omp(P]) + (l—2a)w(Q]) + ap(0).

W(p;) +

n
=3}
It MB

n
I Q) + ow(0)
1 n=1

It is easily seen that for n > 2 the UMP invariant test is given by

w(Pi) = w(Qi) = 0 and 9(0) = 1, and that the power of this test equals Eil,
for all 6 ¢ QK. For n = 1 the UMP invariant test is given by w(Pl) =1,
w(Qi) = @©(0) = 0, with power equals to 1; while for n = 2, any test with
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() = @, =1 - ©(0) ¢ [0,1] and ©(Q,) is UMP invariant with power i.
(LEHMANN (1950)).
Problem 19.

(i) Let A € A . Then, by definition, IA(x) = IA(gx), for any g € G
and x € X - Ng’ U(N ) = 0. Thus Ig(x) =1 - IA(x) =1 - IA(gx) = Ix(gx),
which implies s A Consider any sequence A],Az,... € AO' Put
A= Un=1 An' Wlthout loss of generality suppose that A ’AZ"" are disjoint.
For each n, IAn(x) = IAn(gx), for all g, x € X - Nén) u(N(n)) = 0. Hence
; (T)U; b3 N}n)An(X) An(gx) = I,(gx), for all g, x e X Tg,

g =V g’ u(Ng) 0 which 1mp11es A€ A Hence A is a 0-field.
Let £ be an almost invariant critical function, that is f(x) = f(gx),
for all g € G, x € X - Ng’ U(Ng) = 0.

Define, for r € R, Ar = {x : f(x) < r}. Then IAr(x) = IAr(gx), so Ar € AO'
Hence f is Ao—measurable.

Conversely, let f be Ao—measurable. For any rational number r in [0,1],
define A = {x : f(x) < r}. Then A € AO’ which means that IA is almost
1nvar1ant, that is, for any g € G there exists a set Ng with measure zero
such that IA (x) = IA (gx) for all x € X - Ng’ which implies that
IAr(x) IA (gx) for all x € X ~ Ur Ng This means that £(x) < r

iff f(gx) < r, for all r,g and x% Ur NE dEf g’ with u(Ng) = 0. But this

g
means that £(x) = f(gx) for any x % Ng' Hence f is almost invariant.

(ii) Lehmann does not define the concept of sufficiency for o-fields.
A possible definition is:

A o-field AO is sufficient for 6 iff the Ao—measurable function

T : (X,A) - (X,AO),defined by T(x) = x, is sufficient for 8.

HALL, WIJSMAN and GHOSH (1965) give as definition:

A o-field AO is sufficient for 8 iff for any A-measurable, P-integrable
function f1 there exists an Ao—measurable function f2 such that
EPG[fI(X) | AO] = f2, a.e.~P, where Epe[fl(x) | AO] is defined by the

relation

for all A € Ay, l{EPe[fl(X) | Ajl(x)dPy(x) = i £, (x)dPg(x).

By Problem 10 of Chapter 2 both definitions are equivalent.
We use the definition of HALL, WIJSMAN and GHOSH (1965).
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For any A ¢ A, g ¢ G, Pe(gA) = Pge(gA)

of the Appendix there exists a measure A = ¥ ciPe_ which is equivalent
i

to P. Hence A(gA) = A(A) for all g and A. By Lemma 2 of Chapter 2

PS(A)’ by g0 = 8. By Theorem 2

ap, dp,
*l{—aT(gX)dX(x) f (y)dk(g vy = ng TANy) = Py(gh) =
aPg
= PG(A) = iﬁ-(x)d)\(x).

dP,
Thus (gx) = dA (x), a.e.A. So df is almost invariant and consequently
A0~measurab1e Consider any A-measurable P~integrable function £

Define f —-Ek[f Xy | A ] Then f, is A o measurable and for all A € A

J gl [ AT Goar, ) = [{ £,(x)dPg(x) =

dPe dPe

- I{E*(X)fl(X)dX(X) =1{ Ex[“dr“‘)fn(x) ]AO](x)d (x) =
dPg

= {\ TR, RdA(x) = ;{ £, (x)dPy () ,

by Lemma 3 (ii) of Chapter 2.
Hence f2 = EPe[f](X) l AO], a.e.-P, which implies that AO is sufficient
for 6.

Section 8
Problem 20.

(i) Let (jl’jZ""’jn) be the permutation of {1,2,...,n} for which

Y: <Y. < ,,, < an. Then we have

1] 12
m n m n #{ }
U= I U,=7 T Us: = % X, ¢+ X, <Y sis=l,...,m),
j=1 i=1 11 =1 i=1 Mk g=g iy’ e
Put A = {Xl""’xm’Y]"”’Yn}' Then the rank Sk satisfies
= # ; .
Sy {ZeA.ZSYJk}.
Since {Z ¢ A : Z < ij} = {xi X, < ij, i=1,...,m}u {Yj],...,ij}

we have
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8, = #{xi PR < Yy, i=1,...,m} + k.
n _ n{(n+1)
Hence Zk=1 Sk =U + 5

(ii) We will show that the total nuﬁber of steps equals n.m-U. The
arrangement X...Xy....y can be achieved by steps in which a configuration
..yX... is replaced by ...xy... (if for a given arrangement no pair yx
exists, this arrangement must be the final one; and conversely). Hence the
total number of steps equals the number of steps of the form
ceYKeee T i uXYe

m
and Y = {yl,yz,...,yn}. Let z = (21’22""’zm+n) be any permutation of

Given n+m distinct points (x],...,xm,yl,...,yn) define X = {x],xz,...,x }

(x],...,xm,yl,...,yn). Define f(z) as the sum of the i for which z; € v.

If zq 1is the original arrangement, i.e. if z = (Zl""’zm+n) with

n
< < =
z, < z, N Z 40’ then f(zo) zi=l

If zg is the final arrangement, i.e. if zg = (xil"'°’xim’yj1""’yjn)

S., with S, = the rank of y,.
i i i

then f(zf) = ZE=] (m+k) = nm + Eﬁ%gjlu Replacing a pair yx by xy increases
the value of f by 1. No interchange of neighboring elements is such that
the value of f is changed by more than 1. Hence the total number of steps

equals f(zf)-f(zo) which is equal to nm - U, by (i).
Problem 21.

Let (Xl""’xm) and (Yl,...,Yn) denote a sample from the continuous dis-—

tribution functions ¥ and G respectively. Since Ui' equals 1 or 0 whether
. <Y, . > Y. i se) = = .

X1 3 or X1 YJ respectively, we have E(UlJ) P{X1 < Yl} [ Fdc

Hence E(U) = mn f FdG.

For the calculation of the variance we observe that

2y . -
E(Uij) = E(Uij) = { FdG,

(if j # k)
E(UijUik) = P{xi < Yj,xi < Yk}
= | P{xi < Yj,xi <Yy | X, = x}dF(x)
={ (- ¢)2ar,
(if i # k)
E(U.,.U, .,) = f deG (by a similar argument),

i37k]
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(1f i #k, ] #k)

E(UijUkl) = [E(Uij)]z = [f Facl?.

Hence

E(ZZZUij)Z = m [ FdG + mn(n-1) | (1-6)2%4F + m(m-1) | Fde

+ m(m-Dn-1)[[ rde]?.

This implies relation (30) because mn Var (U/mn) = [E(UZ) - (E(U))z]/mn.
If F = G then (31) follows from (29) and (30), since f FdF = } and
J Flar = i,

Remark: the proof of these results can also be found on pp. 335-336 of
LEHMANN (1975).

Problem 22,
(i) Let (tl’tZ""’tN) be any permutation of (1,2,...,N). Then we have

P{T, = ty,..., Ty = tyd = J & J £,(z) e Ey(z)de . dzy,

N

where A = {(zl,...,zN) e R : z; #z., z; is the t.-th smallest of the

J
set {Zl”'°’zN} for i,j = 1,2,...,N,i# j}. Application of the trans-

formation Wes = ozg for i = 1,2,...,N yields

PAT) = e, Ty =g} = ! £ Gre ) By (wp)dwy o dwy
Wi<...<w
I N
f (w,)) £o(we )
1Yt Nty '
f(wt ) . HC) .(N.f(wl) f(wN))dw]...dw
N 1 N

W1<...<W N

(ty) €=
E[ £, £,V

=)

ety v (tw))

since the density of V(I),...,V(N) equals N!f(w])...f(wN) on the set

{(w],...,wN) R Wy <w, <Ll < wN}, and equals zero elsewhere
(see Problem 26).

(ii) Applying equation (32) with N = n+m; f1 = ,,, = fm = f,

fm+1 = .. = fN = g; assuming that f is positive whenever g is, we find,
)

for every permutation (t],...,t ,t

mrEmapseeest

m+n
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P{T]=t .., T =1t ,T =t eeusT =t  }

1’ m m’ “mt1 m+1’ m+n mtn

_L_E[f(v(tl)) B f(v(tm) g(v(tm+1)) ,,,gﬁV(tm+n))]

[g(v(tmﬂ)) g(v(tm"n))].

=L
N f(V(tm+])) f(v(tm+n))

Now let S ,Sn denote the ordered ranks of Z sZ +n (among the

preee SURPRRRPYAN
Z's), and let (s],...,sn) be an arbitrary but fixed value of (Sl""’sn)’

Then
P{S] =g

ZP{T1=t T =t ,T =t

m m’> m+l mel? " N tN}’

where the summation extends over all permutations (tl""’tN) of (1,...,N)

which satisfy {t ot o} o= {sl,...,sn}. Since there are precisely

m+1**° " "min
n!(n-m)! permutations with this property, and since the probability of

occurence for each of these permutations is equal to

[g(V(tmﬂ)) ,g<v‘tm+n’>]=L [g(v(51)> ,g<v‘sn)>]
f(v(tm+])) f(V(tm+n)) N! f(V(S])) f(V(Sn))

1
N!
the desired result follows.

Problem 23,

(i) Let y e (0,11 and {x : F(x) = Y} # @. Since F is continuous, the
set {x : F(x) = y} is (non empty and) closed. Hence it contains its

infimum. This implies F[F—](y)] =

If y e (0,1] and {x : F(x) =y} =@ theny = 1 and F(x) < | for all x ¢ IR,
+ and hence F[F_](y)] =F(o) = 1=y,

In this case F_](y)

Evidently F[F_](O)]

F(—oo) =

To show that F_][F(y)] may be smaller then y, define F, as follows:
Fo(x) =0 if x £ 0, Fo(x) =x if O0<x<}, F, (x) = } 1f l<x<1,
Fo(x) =ixif 1 £ x <2, Fo(x) =1 if 2 £ x. Then F [F Hl =14 <3,

A

(i1) 1If F_l(y) < x then y = F[F_](y)] < F(x). Conversely we see that
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(since the infimum of the empty set equals +®) F_](y) = inf {x:F(x) 2 y}.
Hence if y < F(x) then x ¢ {x : F(x) 2 y} and F_l(y) < x. It follows that
F—](y) < x ey < F(x), or equivalently F(x) <y & x < F_](y). Hence

P{Y < y} = P{£f(2) < y} = P{Z < F_](y)} = h[F[F‘I(y)]]. This last ex-
pression is equal to h(y), by (1).

(iii) Taking h(t) = t for 0 < t < 1, the desired result follows from (ii).
Remark.

For arbitrary (not necessarily continuous distribution functions F, the
relations F_l(y) <xo®y<F(x) and F(x) <y & x < F—](y) are still true,

provided that F-] is defined by F_](y) = inf {x : F(x) 2 y}.

Problem 24,

(i) Let Z have c.d.f. F. If F' is the c.d.f. of £f(Z), then for all y
F'(y) = P{£f(2) < y} = P{Z < f_l(y)} = F(f_l(y)), since f is continuous

and strictly increasing.

(ii) Suppose (F. ) and (F! ) are on the same orbit. Then

N
.
1 contlnuous and strictly 1ncrea51ng

=1,
for i=1,...,N : F' = F (f']), w1th f_

Let F be any continuous strlctly 1ncrea51ng c.d.f.. Put h = Fi(F ) and
t -1 = | - =
F F(f ). Then Fi hi(F) and Fi Fi(f ) h. (F(f )) hi(F ).

Suppose conversely that Fi = hi(F) and Fi = hi(F'), for all i, with F

and F' strictly increasing continuous c.d.f.'s. Put f = (F')_I(F). Then

1
f is contlnuous and strlctly increasing; moreover F, (f =

P @) = b (B ED)) = b (7Y = F)
Problem 25.

In view of Problem 23 (ii) F(Zi) has distribution function h; with density
hi. Noting that the ranks of Z],.. .32, are the same as the ranks of

F(z ), F(ZN) and applying Problem 22 of this chapter with f = hi,
f= (O 1 and V(l) = U(l) we see that (33) holds.

Problem 26.

f 1 f(z(l)) on

. £ z( )} we obtain the result by

(i) Since (Z(l),...,Z(N)) has density N! T
{(z(]),...,z(N))] z(]) < 2(2) <
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intergrating

N .,y n

N! T Py 1o
i=1 j:] J
i&{sl,...,sn}

over the set {(z(l),...,z(sl_]),z(sl+l),...,z(N))I D, @ 817D

<y, < 817D o< (D) v, < 25271 < My e by
computing
N WYy ¥ R Yy
N I£(y)) AN L L £ 2 o ..
j=1 o 2D ,(2) ,(8172) Y, MCAY ,(8272)
o oo =3 N . _
[ o I f(z(l))dz(N)dz<N 1)...
(sy+1) (N-1) i=1
Vo2 O z i {sl,...,sn}

dz(sn+])dz(sn_l)...dz(Sl+1)dz(Sl—])...dz(]).
(cf. DAVID (1970) p.9, HAJEK and SIDAK (1967), Theorem II,1.2.c.).
(ii) needs no comment.

(iii) The Jacobian of the transformation (Vl”"’vn) > (yl,...,yn), given
by v; = H?=i Vi is the determinant of an n Xn upper triangular matrix

with diagonal elements H?=i+] vj, i=1,...,n, and consequently equals

H?=2 vg_l. Hence the distribution of (V1’°°"Vn) is given by
N! v V2 vn—l(v v )S]—l
(s]—])!...(N—sn)! 2°3""""n 12°°°* "
8375] s37sp"1 Sn

'[(l—vl)vz...vn] [(l—vz)v3...vn] ...(l—vn)

which factorizes in

- 1
n (Si+] I).

m .
i=1 (=D 1(s;, -8;- D! i

i_l(l—vi)si+1—si_]

with Shel T N+1.

Problem 27.

(i) Write Vi = F(Xi) (i=1,2,...,m) and Wj = F(Yj) (G = 1,2,...,m).
From problem 23 of this chapter it follows that Visee.,V are i.i.d.

and R(0,1) distributed and that W ..,Wn are i.i.d. with distribution

1°°
function h concentrated on (0,1). Since h is differentiable the density
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of each-of the Wj equals h'. For any pair (i,j) with i # j:
P{x, = xj} =:é P{X; = X | xj}dF(xj) =0,

P{Yi = Yj} = 0 (analogously), P{Vi ='Vj} = P{U1 = UZ} = 0 and
P{wi = wj} P{G(Yi) = G(Yj)} = P{Ul = Uz} = 0, where U, and U, are
independent and R(0,1) distributed. Hence, with probability 1, rank (Xi) =
rank (Vi) (i=1,2,...,m) and rank (Yj) = rank (Wj) (3 =1,2,...,n).

Let Sj denote rank (Yj)’ then applying Problem 22 (ii) we find

A

- - - v r(S1) v ¢11(8p) +n
Hs]—s .58 -sn}—Em Uy, n' (U “)]/C;),

1°°° n

Mo, < gl

where U is an ordered sample from the R(0,!) dis-

tribution.

(ii) Let h(x) = xk for 0 < x < 1 where k is a positive integer, then
OISR RTGLC VS R ST FSICIV N S B CH I B

By Problem 26 (iii) there exist independent random variables RI’RZ""’Rn
S3 .
such that U( i) . RiRi+I"'Rn (i =1,2,...,n), and R, has the beta
distribution Bsi’si+l"si' Hence
- - n n - n S (le—
B[Syl Gn)yk-1y _ E[ T 1 RS 1] = 1 mieD
i=1 j=1 3 j=1 ]
o TGN Ty
j=] P(Sj) T(Sj+]+3(k—]))

From this (37) easily follows.
(cf. DAVID (1970), pp. 27-28)
Problem 28.

Applying Problem 27 with h(x) = (1-0)x + Oxz we see that the distribution

of the ranks Sl < ... < Sn of the Y's is given by

Pe{S = 8)5...,8 = sn} = <§>_1 E iﬁl (14-6(2U(Si) -1)),
m . .

where U < U(N) is an ordered sample from the R(0,1) distribution.

..

For 6 >~ 0 this means

_l .
8, = s )= (2) {1 +o 3 mu -y

i=1
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n-1 n . .
+82 s 3 E[(ZU(Sl) -1y u8i) - 1)} + 0(93)} -
i=1 j=i+l
<N>—1{] .0 [Zl (281'. _ l) N 92 n)-:] ]:Z)_ [4 SiSj + Si/\sj ~
n j=1 \ N+1 : i=1 j=i+l (N+1) (N+2)
Si-l-Sj 3
2'-—-ﬁ:+—i—— + ]] + 0(9 )}-

By the Neyman-Pearson lemma we see that the derivative of the power

function at © = 0 is maximized among rank tests by each test of the

Wilcoxon type, i.e. each test with critical function ¢ ¢ [0,1] satisfying
1

n
w(Sl,...,Sn) = {something if X s,

C
0 i=1 1 ’

AV

where C and "something" have to be such that EOQ(SI,...,SH) = Q.

We make two remarks.

1. For some significance levels o i.e. those o not equal to k/ (g) for
any integer k, there exist infinitely many tests of the Wilcoxon type
which maximize the derivative of the power function. For such a signifi-
cance level we choose a test which maximizes the second derivative given
the significance level and given that it maximizes the first derivative.
However, there may again exist infinitely many of such tests. We may pro-
ceed in this way up to and including the n-th derivative.

2, By an argument analogous to the one given after formula (19)

on p. 237 we see that for every o there exists a 6(a) > 0 such that, uni-
formly for © ¢ (0,6(a)), every test of the Wilcoxon type has power higher
than every test which is not of Wilcoxon type (which means that
w(Sl,...,Sn) > 0 for some (Sl”"’sn) with Z?=1 Si < C). Tests with this
property are called locally most powerful, rank, LMPR, tests. (See
Problem 2 of Chapter 8.)

We may draw the following conclusion.

Let o be a fixed significance level. We proceed along the lines of
remark 1. If there exists a j such that considering the j-th derivative
yields a unique test, then there exists (by an argument similar to the
one given in remark 2) a 6(a) > 0 such that uniformly for 6 ¢ (0,8(a))
this test has a power higher than every other test. If an analysis of

all derivatives (including the n-th one) does not yield a unique optimal

test, then the remaining optimal tests are equivalent in the sense that
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their power functions are equal.
Problem 29.

The result of Problem 28 can be generalized to alternatives (F,G) with
G = (1-0)F + 6F% + 6%, (F) + 0%, (F) + O"M(F) + ... , where M,

(i = 2,3,...) are differentiable (Application of Problem 27 with h(x) =
(1-0)x + 6x” + 6%, (x) + 0%, (x) + ... yields that the distribution of

the ranks S] < ee < Sn of the Y's is given by

Pe{S] = 8pse.e8 = sn} =

(16)
-1 n . .
<N> E N (1-0+20080 +02ur @Gy 4. .
n i=1 1
Differentiation of (16) w.r.t. 6 under the expectation sign will give the

same expression for Ji—P {S, = s.,...,8 =135 }|, . as in Problem 28.
36 "6°"1 1 n” | 0=0

Hence in the problem of detecting a shi?t 8 in a distribution F the
Wilcoxon test is a LMPR test (see Problem 2 of Chapter 8) for those dis-
tributions F for which the alternatives G(x) = F(x-0) are of the form
G(x) = (1~-B)F(x) + 6F2(x) = 63M](F(x)) + ... . Of course the remarks in
Problem 28 remain valid here.

If F'(x) = F(x) - Fz(x), using the expression F(x-8) = F(x) - O0F'(x) +
%62F"(x) - %rF”"(x) + ... , we see that F(x~-0) is of the form
(1-8)F(x) + SFZ(x) + GZMI(F(x)) + 63M2(F(x)) + ... as above, provided
F"(x),F"(x),... can be expressed as differentiable functions of F, which
is seen to be true by using F'(x) = F(x) - Fz(x) and finding F"(x) =
F'(x) - 2F' (0)F(x) = F(x) - 3F>(x) + 2F°(x), etc.

The logistic distribution F(x) = 1/(l1+e ¥) satisfies the differential

equation F' = F-Fz.

Problem 30.

It is sufficient to prove V F] € Fl : EFlw(X) > 0. Let F, ¢ F]’ feC

1
and FO € FO be such that F1 is the distribution function of the random
variable f(X), where X is assumed to have distribution FO. Then by
conditions (a) and (b)

Ep,0(X) = Ep 0(£(X)) 2 Ep 0(X) = .

Hence ¢ is unbiased for testing FO against Fl'
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Problem 31.

Recall (Problem 20) that U = Z?=l Si-%n(n+1), where S1 < S2 < .0 < Sn

denote the ranks of the Y's., Further we know that under the hypothesis
the samples are from a common distribution

_ _ 1
n Sn} a <m+n>

n

P{S] = S 5e.1s8

Define S; (the inverse rank) as (m+n+1)--Si (i.e. the subject that held

rank §8; now has rank S;). Then, under the hypothesis,

- - - 1
P{Sl—sl,...,Sn sn} el
n

and therefore Z?=l Si and Z?=l Si have the same distribution.
From

n 1

r S = {(mtn+1)-8,} + ... + {(mn+1) -8 } =

i=1 1 1 n )

n
n(m+n+l) - ¥ 8.
i=1 %

1

it follows that, again under the hypothesis,

n
S. and n(m+p+l) - I S,
1 1 i=1 L

nM3

i
have the same distribution. By substracting in(n+1) - jmn from these
statistics we find that

U-im and imm - U

are identically distributed, and hence U is distributed symmetrically

about immn.
(LEHMANN (1975)).
Problem 32.

(i)  Apply the two sided Wilcoxon test to the sample Xl""’Xm and
Yl-AO,...,Yn-AO. Let Sl,...,Sm and Rl""’Rn denote the ranks of
Xl""’xm and Yl-AO,...,Yn-AO in the combined sample. The two sided

Wilcoxon test rejects if
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for some suitable chosen C.
This statistic attains its maximal value if the combined sample can be

ordered in one of the following two ways

D o x™ . Y(1)~AO < ... < Y(“)—AO
Qan

Y(])—AO << Y(n)—AO <x(D <« < x®,

T attains its second largest value in case of the orderings

e x@D My oy gDy gy
0 0 0
(18)
YD op < cx® Dy x(D cy® g @ @
0 0 0
Under H : A = AO each ordering of the combined sample has equal probability
]/(m;n) . Therefore the rejection region for o = 2/(m;n> is given by (17)
\
and for a = 4/(m;n> by (17) and (18) together, i.e. reject H if (17) or
(18) is satisfied.

Hence for a = 2/(m;n> we find the confidence region

x® > Y(l)—AO and Y(n>—A0 > x(D),

and a confidence interval for A

¢ _g@ ¢ p o g@ _ (D

2

with confidence coefficient 1-—2/<m;n).

The acceptance region for o = 4/<m;n> is given by the negation of ((1) or

(2)) which is equivalent to

@ 5 (D = By

e (1

—AO >
(19) @1) . () m . (2)
&\ sy =b, or ™ >y -4y,

™D -4, > XD o Y@ -4, > x(z)),

Using
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¢ _x@1) o (1) o (m)
¢(2) _x@ () _y(m)
@ _ 5@ @ (D)

y@D _ (D @ ()

(19) is seen to be equivalent to

min (Y(l) "'X(m_]),Y(Z) "X(m)) < AO < max (Y(n) = X(z),Y(n—l) _x(l)),

. . . . +
a confidence interval for A with confidence coefficient 1 _4/(mhn>'

(ii) We follow the construction of confidence intervals for a shift as

proposed in LEHMANN (1975), pp. 91-95. As in Problem 20 U denotes the

number of pairs i,j for which Y. > X.. Let D < ... <D denote the
j i (n (mn)

= - and D( = © ye have

ordered differences Y. -X.. With D
j i ( m+1)

0)

(20) PA{D(S) < A<D }=P0{U=s}, s=0,1,...,m

(s+1)

(for proof see LEHMANN (1975)), where the subscript on P indicates the
value of A for which the probability is computed. Since the right hand
side of (20) is tabled for small values of m and n we are able to con-
struct a confidence interval for A.
Equation (20) implies

t=1

[D(s)’D(t))} = izs PO{U =i} for 0 < s < t < mn+1.

(21) P, {A

m

Al

Ifm=mn=26and o = 1/21 = .048 we have

A

PO{U < 5} .0206 < io

PO{U < 6} L0325 > la.

Since the distribution of U is symmetric about 18 (Problem 31) if A =0
the interval [D(6)’D(31)) is a confidence interval for A with confidence
coefficient 20/21. D(6) and D(3l) can be determined by writing down all

differences Yi-Xj, which leads to D = -.089 and D .804.

(6) (3D

Note that the construction of (ii) can be used to derive the confidence

intervals of (i).
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Problem 33.

(i) Since . max(X,X') and min(Y,Y') have distribution functions F2 and

1- (]-G)Z, the probability P{max(X,X') < min(Y,Y')}} equals both

f F2al1- (1-0)%1 = 2 [ F2(1-6)dG
and

| (1-0)%aF? = 2 [ F(1-6)2dF.
We conclude that

= F2(1-G)dG + f F(1-G) 2dF + [ (1-F)G2aF + f (1-F) %cdc

b
|

= [ (F-FH)aF + | @-6%yde + [ (F-c)%dlF+cl

+ 2A.

I
Wi

(ii) If F = G it immediately follows that A = 0.
Let A = 0. Suppose that G(x])-F(x]) =n > 0 then there exists X, < x
such that G(xo) = F(x]) + in. Hence for all x ¢ [XO’XI] we have

]

G(x) ~F(x) = G(xo)-F(xl) = in. Moreover, G(x])-G(XO) = in implying
A >0, a contradiction. Similarly the assumption F(xl)-G(xl) < 0 leads

to a contradiction. This completes the proof.
(LEHMANN (1951)).
Problem 34,

(i) Let a ¢ (0,1) and let Xi,Xi;Yi,Y;, (1 = 1,2,...,n), be samples of
size n from F and G. Because of Problem 33, the given problem is equi-
valent to that of testing p = % against p > %, with

p=3%+2 [ (F-6)2[(F+06)/2].

If we put

v, =

. ] . ] 1 . 1
{1 if max(Xi,Xi) < mln(Yi’Yi) or max(Yi,Yi) < mln(Xi,Xi)
i

0 otherwise,

(i=1,2,...,0), then Z?=1 Vi is a binomial(n,p) r.v. and the
(randomized) level o test which rejects if Z?=1 Vi > ¢, for some constant

¢, is strictly unbiased because of Theorem 2.(ii) of Chapter 3.

(ii) Consider samples X ,...,X from a distribution F and Y sese,Y_ from
1 m 1 n
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a distribution G. We prove that there does not exist a nonrandomized un-
mn

1/ N

In fact, if we denote the ordered ranks of the X's in the combined sample

biased rank test of H against all F # G at level o =

by (Rl" ,R ), then a nonrandomlzed rank test at level a has its rejection
region equal to {Rl = r?,...,Rm =1 } for some (r N ) € {(r s €
{1,2,...,m+n}m ir < T, < ... < rm}. But now the power against at least
one of the alternatives for which P{X < Y} = 1 or P{Y < X} = 1, is zero,
because for these alternatives

P{R] =1,...,R_ =m} =1, resp.

1>{Rl =n+l,...,R_= mtn} = 1.

(LEHMANN (1951)).
Section 9.
Problem 35.

(i) Let K be the number of distinct sums Zi + Zj that are positive. Then
N N 1 if z, > 0 and 2] < [Z.],
K= I T U,., where U..={ ] ]

i=1 j=1 1 t 0 otherwise.

Furthermore, let

14if 2, >0 1if |z,] < |z,
A.={ ] , v..={ t ]
J 0 otherwise 1 0 otherwise.
Let R ,RN be the ranks of IZ I, . .,|ZN[. Then
N
U.. =A.V,. and X V,. =R,.
ij 1 1] j=1 13 J
It follows that
N N N N N N
L 8. = %X AR.= X A, ¥ V..= ¥ I = K,
j=1 3 j=1 31 j=1 3 i=1 1J i=1 j=1 11

which is the desired result.

(ii) Let the function h be defined as

] 1 ifz>0
h(z) = {

0 otherwise.
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Define
@ _1 ¢
UN N 15] h(zi)’
() (N)" .
U = Iy h(Z. +Z.).
N 2 1€i<j<N @+ 29

Now PURT and SEN ((1971), p. 172) remark that

N1 ¥ _ (B, 2 (A)
() 55T e Uy

or equivalently

N N
X 8. = 1¥x h(Z.+Z.) + T h(Z.).
j=1 1 I=i<jsN i3 i=1 1
Hence
N N(N-1)
E( by s.) = — 2 p{Z, +2Z, > 0} + NP{Z, > 0}.
j=11 2 1 2 1
Since
P{Z,+Z, > 0} = 1 ~ [ D(-2)dD(z)
and
P{z1 >0} =1 - D(0)

it follows that

E<.§] sj) = XD () - fp-a)ap(@)} + 8(1 - () =
i=

IN(N+1) - ND(0) - IN(N-1) [ D(-z)dD(z).
(WALSH (1949)).
Problem 36.

(i) As in Section 9 we characterize the problem by the triple (p,F,G)
with p = P{Z < 0}, F(z) = P{|z] <z | Z <0} and G(z) =P{Z <z | z> 0}.
The density of F is p_]f(z-+9) and the density of G is (l—p)_]f(z-e).

Let 1 < il < ves < in < N and let Ci]---in be the event "zil> 0,...,Zin3>0,
Zj <0 for j ¢ {il,...,in}". So i],...,in are the indices of the positive
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Z's. Then by conditioning on Ci]...in and by applying Problem 22 (i) we
find for any possible set of ranks tise..sty of lle,...,]ZN]

P{T] =ty,... [ Ci]"'in} =

= EL'E{ I (-0l _gy .

je{i]""’in

1 o ler'i +e)/zf(v(’))---zf(v(N))}
T CONNNY

n
where Tj is the rank of IZjl and V(]) < ..l < V(N) is an ordered sample
from a distribution with density 2fI(0 )

’

Next let r, < .. < L. be the ordered ranks of the absolute values of the
negative zZ; in the sample lZ]|,...,|ZN| and similar by $p < .ee <8y the
ordered ranks of the absolute values of the positive Z's, then there are
min! possible sets of ranks {t],...,tN} having these prescribed sets of

ordered ranks and we find

m!n!p_m(l-p)_n )
MNyr
@D,y et O)f(v(sl) - e)---f(v(sn)

- e)}

P{S =5,,...,5 =5 | Ciyuuuig) =

E{f(V

(22)

Since this probability is independent of il,...,in it also equals

(23) P{S]=s],...,S =g

n= 5y | the number of positive Z's is n} .

Multiplying by (ﬁ)pm(l—p)n, the probability of n positive Z's gives
formula (38).

(ii) Firstly we derive the rank test of the hypothesis of symmetry
which maximizes the derivative of the conditional powerfunction given the
number of positive Z's. The reasoning is analogous to the reasoning on
p. 237.

. _ B d _
Since p = j;w f(z)dz we have Eﬂ;p 6=0 = £(0) and therefore

- -nf (0) _ —-nf(0)

d -n
6=0 -m-1 and 35(] o) =0 _-n-1
2 2
Now, under some regularity conditions, the derivative of (22) and (23)

at 8 = 0 is equal to
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-)
-1 m n '( J
M+<N)[E2f(v EZf )]
n f(VJ) =1 gy ®iy
(t') (s53)
NI Y eIy L AR
M+ EZ ZEZ'——TE——
n/oL £v i) £(v 37
S
w oM B EGCT)
K ’
n =1 g °i’y
where M and M' are constants depending on n, but not on LEERERTL . and
S seees8 -

Since under the hypothesis H : 6 = 0 the probability of any outcome is

equal to 2_N it follows from the generalization of the Neyman-Pearson
lemma, Theorem 5 of Chapter 3, that the derivative of the conditional

power function at § = 0 is maximized by a test which rejects if

(s5)
n 1
o a(f)sd L@
=t £(v71)
which is equivalent to
(s:)
n ]
(24) -5 X &_—l >C,
=1 og(si)y  m

where Cn and C; are constants depending on n, but not on Tysees,t OF

S.5..458
1’ . n’

This conditional test also maximizes the conditional power function for

sufficiently small 6 (see p. 237).

Now consider the unconditional test we get by rejecting if there are n

positive Z's and (24) holds. This test has the desired properties.

(iii) If £ is the normal density function with zero mean and variance
02 we have
(s3)

n
z
= - = 24) b Ex>x Vv I >c
() 02 » 80 (24) becomes i 0

M (@™

where V . is an ordered sample from a distribution with
density 2fI(0 w)? which is, in case f is the standard normal density
function, the distribution of the square root of a Xl distributed r.v.,
which in its turn is equal to the distribution of the absolute value of a

standard normal r.v..
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(iv) Let F(x) = 1/(1+e X, f(x) = e—x/(1-+e_x)2.

Then ~f'(x)/f(x) = 2F(x) -1 and the conditional rejection region (24) can

be written as

(s3)

n S
E X F(V ¥)>c.

i=1

If V has the distribution with density 2fI then

(0,%)°

P{F(V) < y} = P{V < F—l(y)} =2y-1for } <y <1,

so U = F(V) is uniformly distributed over (},1). The conditicnal rejection

region can therefore be written as

M ™

where U . <U is an ordered sample of size N from the uniform

distribution R(},1). Since
(s.) s

i R R I

EU 2N+1+2

conditionally on the number of positive Z's the test is equivalent to the

Wilcoxon one sample test.
Problem 37.

Apply Problem 25 in the same way Problem 22 (i) was applied in the

previous problem to obtain the expression (38).
Problem 38.

We restrict ourselves to continuous distributions. Suppose Z has a con-—
tinuous distribution function F, and let S = {G : G is a continuous dis-
tribution function with G(x) + G(-x) = 1}. Since there belongs to every F
in the alternative some G ¢ S with F(x) < G(x) for all x, there exists
in view of Lemma 1 of Chapter 3 nondecreasing functions f0 and f1 and a
random variable V such that fo(v) < fl(v) and fO(V) and f](V) have
distribution function G and F respectively. Using the monotonicity
hypothesis on @ it follows that, with Vl""’VN a sample form the dis-

tribution G,
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(25 EFw(Z],---,ZN) = E@(fl(Vl),---,fl(VN)) 2 E@(fO(Vl),--,fO(VN))
= EGm(Z],...,ZN) (cf. Problem 11 of Chapter 3).

Since ¢ is a rank test it is symmetric in its N variables and therefore
by Lemma 3, EGw(Z],...,ZN) is constant on S as a function of G. Hence
using (25)

EFm(Z],...,ZN) > égg EGw(Zl,...,ZN),

for any F in the alternative, implying the unbiasedness of @.
Problem 39.

We consider the problem of testing H : F1 = F2 = oaa. = FN against K :
i<jeVvx Fi(x) z Fj(x) and 3 x Fi(x) > Fj(x).

The joint distribution of the Ti under H is

B B _ 1
(26) P{T] =t,Ty = ty,..., Ty = tN} =5

for each permutation tl""’tN of 1,...,N.
If F]""’FN have densities f]""’fN’ respectively, and f is any density
which is positive whenever at least one of the fi is positive, then the

joint distribution of the T, is given by

(t t
{ NI L Dy e
27 P{T, =t ,...,T, =t ="‘TE[ - ]
175 NTON TN T G TED, I CDN
where W(l) < ... < W(N) is an ordered sample from a distribution with

density f. (See Problem 22).

Consider in particular the translation alternatives fi(y) = f(y - 1if),

fi > 0 and the problem of maximizing the power for small values of 6.
Suppose that f is differentiable and that the probability (27), which is
now a function of §, can be differentiated with respect to 8§ under the
expectation sign.

The derivative of (27) at § = 0 is then

t.
L)

] 1
PAT=t ,...,T=t }| o =~ =vE [, ;
I L Il il PN O N

1

Since under the hypothesis the probability of any ranking is given by (26)
it follows from the Neyman-Pearson lemma in the extended form of Theorem 5

of Ghapter 3, that the derivative of the power function at § = 0 is
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maximized by the rejection region:

(t;)
n 1 1
(28) -z iE[f a )]>c.
i=1 f(w 1)
The same test maximizes the power itself for sufficiently small §. To see
this the same arguments as in Problem 28 can be used here. Hence (28) is

a LMPR test.

L —
(1) If f(x) is the normal density N(Y,Oz), - %ﬁ%%l = - é% log £(x) = E?;
and the left hand side of (28) becomes: o
N (£1) _ N (£:)
x iE[‘—"-——z—-—Y]=l z iE[V 1]
i=1 o o i=]
where V(l) < V(z) < vee < V(N) is an ordered sample from a standard normal

distribution. Hence (41) is most powerful among rank tests against normal

alternatives F = N(Y-+16,02) for sufficiently small §.

- — 1
(ii) If £(x) is the logistic distribution £(x) = e */(1+e %2, - £

2F{x) -= 1 and the locally most powerful rank test (28) rejects when

N (ts)

X iE[F(W 1 )] > C

i=1

where W has the distr%bution F, so that F(W) is uniformly distributed over
t. ts

(0,1). Since E[F(W 1] = ﬁfT the rejection region of the locally most

powerful rank test against logistic alternatives is (40).

(iii) Let Gl(x) > Gz(x) > .. 02 GN(x), Gi # Gj if i # j be an alternative,
and assume that Gi is continuous (i=1,...,N .

Define fi(v) 1= G;l(v) := inf {z : Gi(z) > v}. Then we have

fl(v) < fz(v) < ... < fN(v) and v, < A fi(vl) < fi(vz) (i=1,...,0.
For v, ¢ [0,1] (i=1,...,N) we put z, = fl(vl)""’zN = fl(vN) and

N
e 1 1
v, < vj = fi(vi) < fi(vj) < fj(vj) that is z; < Zj’ hence w(zl,...,zN) <

z; = fl(v]),...,z' = fN(VN). Then i < j, z; < 24 implies f](vi) < fl(vj) =

i
w(z;,...,z&). Thus for all ViseeesVy we have w(f](vl),...,f (VN)) >

N
w(fl(vl),...,fl(vN)). Now

Eg@(z) = [ oo [0z 5.00,2)d6 (2)) -+ - dGy (2) =

[ooee [ 0, (v)yen e, B (v ))dy, < edv 2
[o,11 fo,11 1 ! NN N
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v

[ ooer | @f (v), e £ (v))dy, - e rdvy, =
0,11 fo,137 1 ! N N

[ Oz, 00,20 dG (2)) -+ 4G (z) = a.

Hence any rank test satisfying w(zl,;..,zN) < w(z;,...,zﬁ) for any two
points for which i < j, z; < zj implies zi < zé for all i and j is un-
biased against alternatives of an upward trend.

In order to show that the tests (40) and (41) are special cases of tests

¢ with

w(zl,...,zN) SCHRNN N
for any two points z and z' such that

- 3 ] ]
(29) i<j, z;< 2 =z < zis

we use a result of LEHMANN (1966). Note that when two points z and z'
satisfy (29), the rank numbers (i],...,in) of z' are better ordered
(in the sence of formula (7.2) of Lehmann's paper, p. 1149) than the
rank numbers (jl""’jn) of z; i.e.

=1 < i

(30) a < B and ja < jB o < g

It now follows from Lehmann's Corollary 2 to his Theorem 5 (p. 1150) that

for any non-decreasing function h and a, < a, < . .0 < a,

N N
(30) = kzl akh(lk) > kEl akh(Jk)'

Applications of this result to h(t) = t and h(t) = E(V(t)) (both non-
decreasing) show that (40) and (41) are special cases of the described

tests .
Problem 40.
We shall restrict attention to the case without ties.

(1) Define
1 1if Z, £ Z,
v, = { 3
oY qfz, >z,
1 J

then for i # j
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if i < 3 ¢ i = 1

Vii=lez < zj N { J
J if i>§ U =0,

and, again for i # j,

if i <3 : Ui' =0

Vii=082Z, >Z & { J
1 booYrisgiu,. =0

ij

Since evidently V,, = 1-U,, it follows that
ii ii

U, . if 1 < j
- { i]
H 1-vU,, if i2 3.
ij
Using T, = #{z; 25 <z, i=1,2,...,8) = ol v;; ve find
N N N N N N §-1
¥ jT.= ¥ j £ V,,= X j £ V,.+ ¥ j L =
j=] J j=] i=1 1] J=] i=j 1] ]=2 i=1 1]
N N j-1
= 5 T (1-U,.) + T U, =
j=1 ] i=j i] j=2 I35 i
N N N N j-1
= ¥ j(N-j+1) + ¥ j I U,,+ I i T U, =
j=1 ] j=1 " i=j 11 =2 7 i=1 1]
N N9 . .
= (N+1) i- X - % ju..+ I jU..
j=1 j=1 i>j 1] i<j 1]
o quwnNEED | N@ED (WD) 0.+ T UL,
2 6 : i i i
l>] 1<] 1
U,. =0)

- MRDOED oz G-Duy;  (since Uy = UL,

6 <3 ki ji
(ii) For all Z = (Zl,...,Z ) define U(Z) = zi<j Uij' Note that if i < j
U,. =11if Z, < Z., and O otherwise.
1] i J

1f 7' = (z',...,z&) with

Zi = Z; for all i # k,k+l
zL = Z
Zrer = Py
Then
vy = {U(Z)+ 1 if 2, > 7,

u(z) -1 1if Zk < Zk+1'
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If Zl <Z, < ... < Z then U(Z) = N(N~1)/2. Conversely if there is an

2
index i such that Z > 7, i+l then U(Z) < N(N-1)/2. Complete ordering of
(Zl""’ZN) can be achleved by a sequence of steps, each of which consists

of exchanging adjacent elements Z P with Z, > Z . Since in each

K Lis K 7 D
of these steps the value of U(Z) is increased by one, and since it is
impossible to increase the value of U(Z) by more than one by exchanging

two adjacent elements of Z, the smallest number of steps equals
N(N-1)/2-TU.

Problem 41.
As usual we suppose that the distribution of (Xi’Yi) is continuous.

(i)  We shall prove the following result: testing independence versus
positive dependence is equivalent to testing, conditionally on X(]),...,X(N),
randomness of the Z's versus the alternative of an upward trend (see

Remark 1 below). Let F be the distribution function of Y conditional on
(i
12+ 3Dy by Xp; = X

the random index of the i'th smallest X. Note that Z1 = Yp;.

Let x <Xy be distinct values of X and let x(l), .,X(N) and
(

1’
d,.. dN be the corresponding values of X X(N) and Dl""’DN' Then

]’
conditional on X] IRIERERE N'_XN’ we have that Zl""’ZN are independent

Xi ="x, Define the antl ranks D ), in words, Di is

with distribution functions Fx(l)""’Fx(N)' For

P{Z1 <z ,.0..,2

N I X = x XN xN}
= P{YD1 < 2,00, Yp S zy | Z) = KXy = XN} =

(D

N
],...,YdN < 2y l Xdl = x ,...,XdN = x( )} =

IA
N

= P{Ydl

N
iE] Fx(i)(zi).

Since this joint distribution only depends on x(]),...,x(N) (but not oﬁ

(D) (1)

d.,...,d), it is also the distribution of Z

1 .,ZN given X
MO

]’

Clearly independence of X, and Yi implies randomness, positive dependence

implies an upward trend (for all x(]) < ... < x(N)). Conversely, if

Zl""’ZN are identically distributed (randommess) whatever x(l) <... <x(N)
then Xi and Y are 1ndependent for each i; if Z .,ZN have an upward
trend whatever x(l) . ( )

then Xi and Yi are positively dependent.
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(ii) Since Z -1 Ri = Z§=l Si = IN(N+1), rejecting for large values of

the rank correlation coefficient is equivalent to rejecting for large
values of Z =1 R S Now 21 1 RlS = Z =1 iTi. Under the null hypothesis,
(T 12 ,T ) is 1ndependent of (X(l) X(N)). Therefore the critical

NON

. P 1
value for a conditional test bases on Z 1Ti (conditional on f ),...,

(4™ o

does not depend on X . Hence the conditional test based on
(40) and the unconditional test based on the rank correlation coefficient

are identical.

(iii) The mean and variance of the uniform distribution on {1,...,N} are

u = {(N+1) and 02 = T%(Nz-l). These are therefore the mean and variance

of both the numbers {R],...,El} and {S]""’SN}'
Since var(R-S) = varR - 2V¥varR var S corr(R,S) + var(S) = 202(1-corr(R,S»
we have corr(R,S) =1 - var(R—-S)/ZOz; i.e.

= = 2
£ (R -R)(5;-F) T (R, -8;) 6

N N2

]
—
|

E R -R)2E (5, -5)?
(iv) We say that the set of two distinct ordered pairs {(a,b),(c,d)}
is concordant if (a—c) (b=-d) > 0; discordant if (a-c)(b-d) < O.
Note the any {(i,Zi),(j,Zj)} (for i # j) is either concordant or dis-
cordant when there are no ties among the X's or Y's (which we assume

from now on). The total number of such pairs is IN(N-1). We have

¥ U,. = #{concordant {(i,Z.),(i,Z.0)}, i # j}
i<i I b J

= #{concordant {(i,Ti),(j,Tj)}, i# 3}

= # {concordant {(Ri’si)’(Rj’Sj)}’ i# 3}

= #{concordant {(Xi’Yi)’(Xj’Yj)}’ i#jl.

Therefore

= # 1 3

iEj Vij {concordant {(Xi,Yi),(Xj,Yj)}, i# 3}

- #{discordant {(Xi’Yi)’(Xj’Yj)}’ i# i}

2 ¥ U,. - iNE-1).
1<J J

(v) Consider first the test (ii). Suppose it has size a. By part (i),

m ...,X(N)

conditionally on X the test still has size o while by Problem

39 (iii) its conditional power at each alternative is at least o. Therefore
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its unconditional power is also at least o.
Consider next the test (iv), and suppose its size is a. By the same

(1), .,X(N) the test still

arguments as in part (i), conditionally on X ..
has size 6. It is easily seen that its critical function has the property
specified in Problem 39 (iii). Its conditional power is therefore at least

0, and hence its unconditional power is too.

Remark 1. Though (unconditionally) Zl""’ZN are stochastically increasing
in the case of positive dependence, they are generally not independent.
We were unable to prove the following interpretation of (i): the joint

distribution of T ..,TN is the same as that of the ranks of some in-

1"

dependent, stochastically ordered r.v.'s Z;,...,Z&.

Remark 2. The unbiasedness of test (ii) also follows from Theorem &,
special case (i), or Corollary 2 (iii) in LEHMANN (1966). Similarly the
unbiasedness of test (iv) follows from Corollary 2 (i) in the same paper.
Actually part of the proof of the just mentioned Theorem 4 was used in

the solution of Problem 39.
Section 10
Problem 42.

Let {s(x,y) | X,y € R} be a class of invariant confidence sets and denote
the rotation around (0,0) over the angle o be &y and the translation over

(x,y) by gx,y' Then

(31 g,5(0,0) = 5(0,0) for all o

and

(32) g. _S(0,0) = S(x,y) for all x,y.
X,Y

Now (31) implies that

§(0,0) = U {(£,m) | £2+n? = £}
reR

1
with R={r | r = (s2-+t2)2,(s,t) € 8(0,0)}. Together with (32) this
yields

(33) SGey) = U (&) | E-0%+ m-n? =12, =xyeR.
re
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Conversely, it is easy to verify that (33) is a class of invariant con-

fidence sets.
Problem 43.

Let X X ;Y Y be samples from N(§,0 ) and N(n,T ) respectively.

]"' l’
Confidence 1ntervals for A= /G are based on the hypotheses H(A )

A= AO’ which are invariant under the groups GA generated by the trans-—
formatlons X1 = aXi-Fb, Y1 = aY +c (a # 0) and the transformstion X =

AOZY Y"-Aé . The UMP invarlant test of H(AO) has acceptance region
R A Y NN eI
max{i(Yi Y) /Z(oni A% » T (A%, A% /Z(Yi Y <k

1
(cf. Problem 7 with X; and Y, replaced by A(Z)Xi and Y.).

The associated confidence intervals are
=2 =2 5\ 2 =2
(34) 5 Wi—Y)/kZ(xi-x) < A <kz(Yi—Y)/z(Xi—m

The group G in the present case is the group generated by the trans-
formations Xi = aXi-+b, Y; = aYi-+c (a # 0) and the transformations
' -
dy,, ¥; = Xi/d (d # 0).
The transformation g given by Xi = aXii-b, Y; = aYi-fc (a # 0) induces

'

Xi =
the transformation BA = A. Since for such transformations the confidence
intervals S remain unaltered, the confidence intervals are invariant under
such transformations. The transformations g given by Xi = in, Yi = Xi/d
(d # 0) induces the transformation gl = (Ad4)_l. Application of the
associated transformation g* to the confidence interval takes it into

the interval

= (xi-i)z/kd"z (¥, -D2Ks (x; -Z/d*s (Yi-Y)Z).

Since this coincides with the interval obtained by replacing Xi and Yi
in (34) by in and Xi/d’ respectively, the confidence intervals (34)
are invariant also under these transformations. Hence they are uniformly

most accurate invariant.

Problem 44.

Let 6 be fixed and let S'(x) = {6 : gf(x) < 8} be any (other) G-invariant
class of (one sided) confidence sets at level 1-0. If A'(8) denote the

associated acceptance regions, then for any g € Ge,
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gA' () {gx) : 88" (x}=1{x:06c¢ S'(g_](x))} =

{x : 08¢ g*—]S'(x)} ={x:80 €8} =

={x:0'(x) <8} c{x: 8k <ol

since S'(x) is invariant and since g € Ge implies g8 < 0. Hence for any

g € Ge

gA'(8) < A'(8)
and also

g A (8) < A" (9)
or

A'(8) < gA'(8).

Therefore A'(0) is invariant under Ge for each 8. It follows that these
tests are at most as powerful as those with acceptance regions A(8) and
hence the associated lower confidence limits 0(X) are uniformly most
accurate invariant.

Note that this proof is an adaptation of the proof of Lemma 4.
Problem 45.

Consider the group of transformations G1 = {g : g(xl,...,xn) =

(x]+c,...,xn +c), ¢ € R}. Then 61 = {g : 'g'(E,cz) = (£+c,02), ¢ ¢ R},
Hence, for all Og the problem of testing H, : 02 > Gg against K(OS)

2 . X .
o < 0y remains invariant under Gl'

0

It follows from Example 5 of this chapter that for all Og the acceptance
region
2, _ o =2 2
A(oo) = {x : izl (xi X)) 2 COOO}

is UMP Gl—invariant, where CO is determined by

i xi_](t)dt = .

%o
If S(x) = {(E,Oz) P X ¢ A(oz)} then S(x) = {(5,02) : 02 < t(x)}, where
t(x) = TI% Z;l:l (xi—}_c)z.
For all g ¢ Gl’ x ¢ R™



(5(E,08) : (£,0%) ¢ ()} = {(E',0%) : 0% < t(®)} =

g"s(x)

{(5',02) : o? < tg(x)} = S(gx),

and therefore the confidence sets S(x) are G1~invariant. By an obvious
modification of Problem 44 it follows that the upper confidence limits
t(x) are most accurate G]—invariant.

Next consider the group G2 = {g: g(xl,...,xn) = (axli-c,...,axni-c),
a# 0, -o< ¢ <o}, then Eé = {g : E(E,GZ) = (aE-Fc,aZUZ), a#0,

-© < ¢ < ®}, and for all g ¢ G,

2<

g"s(x) = {(a+c,a’0?) <t} =

(e}
((£",a%6%) : a%6? < a%t(x)} =

(€15 < t(egn) = 5(gx).

Hence the confidence sets S(x) are also Gz-invariant.

Let S*(x) be any family of G,-invariant confidence sets then these sets

2

are also Gl—invariant. Hence, for all (5,02) # (Eo,og),

2 2 *
PEO,G%{(E’O ) e s} < PEO’O%{(E,O ) € (X},

Therefore the t(x) are also uniformly most accurate Gz—invariant upper

confidence limits at confidence level 1-a.
Problem 46

(i) Let Xl"

By Section 4, the UMP invariant test under transformations Xi = aXi for

H: 0 < 90 has acceptance region

A(GO) = {x : T(x) £ c .},

0

where

n }
T(x) = ﬁii/{zl(xi—az/m—n}
i=

0
denotes a random variable with a noncentral student -distribution with

and ¢, is determined by P{tn_l(/E 60) > co} = 0. Here tn_](/ﬁ 60)

n~1 degrees of freedom and noncentrality parameter VG'GO.
Next let S(x) = {8 :xe A(0)}. Using the monotone likelihood ratio

property of the noncentral student distribution (see Section 4) we prove

235

..,Xn be independently distributed as N(E,Gz) and let 8 = £/0o.
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that S(x) = {0 : C_][T(x)] < 8} where C(+) is a strictly increasing con-

tinuous function determined by
Polt G/ 8) > c(®} = o.

Denote the cumulative distribution function of tn_l(vﬁ'e) at the point x
by F(x;vn 6). By Lemma 2 of Chapter 3 we have 06' > 6 = F(x;vn 0') <
F(x;/n 6) which in its turn implies that C is increasing. In fact we
shall prove that C is strictly increasing. By dominated convergence
F(x;v/n 0) can be shown to be continuous in 6 for fixed x. Using this we

prove continuity of C. Suppose there is a ® such that C is not right

continuous in 8. Then there exists an € > 0 and a sequence 6] 2 62 > 63 > ...

converging to § with c(9,) > c(®) +e. But then

k)
F(c(§)+-s;¢5'ek) < F(C(8,);vm 8) = I-a
and by continuity
F(CB) +e;v/n 8) = 1im F(C(B) +e3v0 6.) < 1-a
koo k

which contradicts F(C(8);/n 8) = 1-a. Therefore C is right continuous and,
because the same argument can be used to prove left continuity, C is
continuous.

C is strictly increasing since if 91 < 62 then by Theorem 2 (ii) of

Chapter 3 we have
F(C(B))3/ 0)) = 1-0 > 1-Pp {T(0) > C(8))} = F(C(8)) /A 6,).

Since C is strictly increasing and continuous it is invertible and

{0 : xe A(®)} = {8 : T(x) < C(B)} =
6}

S(x)

{6 : ¢ MT(x)]

IA

is a family of one sided intervals for 6.

Furthermore

g%S(x) g6 : ¢ M1 < 0} =

{86 : ¢ MT(g(x))] < 80} = S(gx),

so the family of confidence intervals S(x) is G-invariant. By Problem 44

it now follows that the most accurate lower confidence bound under G is



given by
8 = ¢ TM]I.

(ii) For this sample T(x) equals 7.6. C_](7.6) can be determined from
table 27 of PEARSON and HARTLEY (1972). We obtain 6 = 3.8/V8 = 1.3.

Problem 47.

(i) Let (X]’YI)”"’(xn’Yn) be a sample from a N(U,n,OZ,Tz,p) distri-

bution. Let G be the group considered in the problem, G, the subgroup of

1
G considered in Problem 11, x = (x],...,xn), y = (yl,...,yn), X =

(X],...,Xn), Y = (Yl""’Yn) and

n _ _ n _o n -2 i
R(x,y) = '):1 (xi—rc)(}'i-y)/{iz1 (x; - %) .Zl (v; -9 } .

i= i=

Let, for any po e (~1,1), A(po) {(x,y) : R(x,y) < C(po)}, where C(po)

1-0, and let S(x,y) = {(4,p)

is determined by PpO{R < C(po)} 0
(x,y) € A(p)}, where A is the nuisance parameter (u,n,o",77).

We shall chech the conditions of Problem &44.

For any po the problem of testing H(po) 1 p < p0 against K(po) :p > po

is G-invariant. This is an immediate consequence of
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(35) g e G, (A,p) € Q= there exists A' such that g(A,p) = ', 0.

For any Pg» A(po) is UMP G~invariant. This follows from the fact that

R(x,y) is a maximal invariant w.r.t. G, and invariant w.r.t. G, which

1
implies that R is a maximal invariant w.r.t. G. Using Problem 11 (i),

where it was shown that, for any Pg> A(po) is UMP Gl—invariant, it follows

that A(po) is UMP G-invariant.

By the same reasoning as in Problem 46 (i) we can prove that C is con-
tinuous and strictly increasing and that we can rewrite S(x,y) as

{(a,p) : p(x,y) < p}, where p(x,y) = Cnl[R(x,y)] (see Problem 11 where
it is shown that the density of R(X,Y) has a monotone likelihood ratio).
S(x,y) is G-in&ariant since by (35) and the G~invariance of R(x,y) the
set g*S(x,y) is equal to S(g(x,y)), for any g ¢ G.

It now follows by Problem 44 that p(x,y) is a uniformly most accurate

G-invariant lower confidence limit at confidence level 1-o.

(ii) Let (xO,yO) be fixed and ry = R(xo,yo). Suppose that the equation
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F(ro;p) = 1-0 has a solution, p say. Then this solution is unique,
because if F(ro;pl) = F(ro;pz) = ]-0 then F(ro;pi) = F(C(pi);pi), i=1,2
and hence C(pl) = C(p2) =1, which implies Pp =Py since C is strictly
increasing. We determine D= C_](ro).,ln the problem o« = .05 and

ry =.22. The equation F(ro;p) = 1-a is easily seen to be equivalent
to F(—ro;—p) = 0. Using DAVID (1938) we obtain p =-0.7,

Section 11
Problem 48.

Let S(x) be a collection of confidence sets, and g€ G. In view of (1n

on p. 214 we have Pée{ée € S(x)} = Pe{ée € S(gX)}. Since 8(x) is
G-invariant this equals Pe{§6 e g*S(X)}. Further, by definition

20 € g*S(x) if and only if O ¢ S(X), and so it follows that

Pée{ée e S(X)} = Pe{e e $(X)}, that is Pe{e € S(X)} is invariant under G.

Problem 49.

(i) Note that compared to Section 1l we are considering a larger group
of transformations.
Let g : R >R be continuous, strictly monotone and onto. We define the
mapping g from the set of continuous distribution functions into itself by
-1 . :
Fg increasing
gF = { 1 if g is

1-Fg decreasing.

Clearly g is onto and 1 : 1. Let L_ and Mx be nondecreasing functions,

X
defined for all sample points x = (xl,...,xn) with no xi's equal, and let
8(X) = (F | L(y) < F(y) < M (y),7 ¢ R}

be the corresponding confidence band. If g is increasing then

A

g'85(0) = {gF | L3 < F(y) s M (y),y ¢ R} =

IA

re” | 167 ) s F&T o) <M (£ 5,y ¢RI =

F L ) s PO <M (& ),y <R

and if g is decreasing then
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g's() = {1-Fg ' | L (y) < F(y) < M (3),y € R} =

{I—Fg—]

| 1-M g ) = 1-FGT o)) = 1-1,(87 o)y e R) =

{F | 1—Mx(g'1(y)) < F(y) < l—Lx(g—](y)),y ¢ R}.

We define the loss function L by L(F,S(x)) = 1- IS(x)(F)' Since
L(gF,g*S(x)) = 1 —Ig*s(x)(gF) = 1-IS(X)(F), the problem is invariant under
g (see Section 5 of Chapter 1).

Let R(x) = (R]""’Rn) be the vector of ranks of x = (x];...,xn) and

R¥(x) = (n+1- Rl,...,rx+ 1- Rn). It is easy to verify that T(x) =
{R(x),R*(x)} is maximal invariant.

The totality of invariant confidence bands is now seen to be the confidence

bands for which there exist numbers a.,...,a 3a.,...,a’ such that
0 n’ 0 n

(36) Lx(u) = a;, Mx(u) = ai for x(i)

m o

(i+1)

<u<x =0,...,0

() (0) @) _ o

where x . < x is the ordered sample (x = ~o and x

(see p. 246), and in addition

(37) a; = l-ar'l_i, i=0,1,...,n.

This is a consequence of the fact that every decreasing transformation is
the composition of an increasing transformation and the transformation
h : x> -x. Condition (37) follows from the invariance of the confidence

band, which we know by Section 11 to satisfy (36), under h.

(ii) For this transformation g

fF(y) ly| <1
gF = P{g(X) < y} = {F(y+1) ~F(O) +F(-1) if -1 <y s O
LF(y-l) +F(1) -F(0) 0<y<l,

and ggF(y) = P{gg(X) < y} = P{X < y} = F(y).
Let

(38) S(x) = {F : L_(y) < F(y) <M (y),y eR}
be a band an observe that this band remains equal if we use

L' (y) = inf  F( d M =
AR IR S
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in place of Lx and MX. Then L; and M; are nondecreasing and between zero
and one. By the same reasoning if g*S(x) were a band then its lower and

upper bounds, §Lx and EMX say, would be given by

2L inf gF d M = gF(y).
gL, () ;28(x) gF(y) and gM (y) ;gg(x) gF (y)

By carrying out this process twice we find lower and upperbounds,
§§Lx and §§M% say, for g¥g*sS(x).
However, since ggF = F, we have g*g*S(x) = S(x) which contradicts (38)

in general. To see this we note that if Mx(—l) > Lx(l) then

Ly () lyl 21
~. - L . _
gl (y) = {Ly(-1) if 1<y=<0
L (y-1) 0<y<1
and
Mx(y) ]yl 2 1
g, (y) = {M_(y+1) if -1<ys<0
M, (1) 0<y<1
and hence
— L, () _ lyl =1
gng(y)={ if
LD ly| <1
and
~ M (y) lyl =1
geM (y) = { if
M (D) ly| < 1.

As an example consider the band with bounds Lx(y) =1+ %I[O oo)(y) and
b
= 3 Py =1 1 = 3 i

Mx(y) 3, then ng(y) P+ 8I[l’w)(y) and EMx(y) 7. But since for

F € S(x) we have

BF(-) -gF(-}) = F(H-FH) < i-(} + ) =

[<3 {7}

and therefore g*S(x) contains no distribution functions F with

F(-}) -F(-3) > 2.
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CHAPTER 7

Section 1

Problem I.

As is indicated on p. 266 the variables Y ..,Yn are again independently

1°;
normally distributed with common variance 0 and means E(Yi) = ”i for
i=1,2,...,5, and E(Yi)

Hence (r < s)

0 for i = s+1,...,n.

r Tr r
el s Yy =1l s 5@Y) = 1 Fen?) =
j=1 9 =t j=1 .
r
I n%
j=1 3
and
n n n
Ba-s) ! T ¥ =@ ¥ B¥H) = (m-s) ! ¥ of = o?
j=s+1 j=s+1 ] j=s+1
Problem 2.

(i) Since P{X < t} = ®(t-9y) we have for v 2 0

PV < v} = P{X? < v} = P{~/¥ < X < 5} = O(/F - ) - B(=/5 - ).

Hence
v ! ' - 1(~/v - =
pw(V) = -——zﬁ[é Vv = §) + &' (~vv w>]

1 b [N, A
2vV2mv € [e te ]

I IO R i

== e

Jore oo @R
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Since (2k)! = I'(2k+1) = 2kT(2k) = 2k2”X7IP ()T (k+4)7?  the preceding

density can be rewritten as

1 i
12 ® -2v_k—3
pz(v) =e 2¥ ¥ ]i ek+1v =
k=0 2" k! 27 2T'(k+})
—1y2 - -1
o zlp 2k 3V k 3
-5 & ] e ‘'y

K 1 =
k=0 2 k! 2k+2F(k+§)

Z P (W (v)
k=0 2k+1

(i1) Let Y Y be independently normally distributed with unit

1’
variance and means ”1’ ..,nr. Deflne Y = {ZJ 1 nz}z. Let C denote an
orthogonal (r x r)-matrix with (n, w ...,nrw ) as first row and consider

the orthogonal transformation Z = (Z .,Zr)' =CY, Y = (Y],...,Yr)'. Then

1!
_ or

a. Z] = Zi=]

b. E(Zl) =y

-1
ﬂiw Yi’

c. for i=2,3,...,r E(Zi) 0 since

T T
E(Zi) = jEI cijE(Yj) = E c..n, =0 (i=2,3,...,r)

by orthogonality;

’ZZ""’Zr are independently normally distributed with unit

variance by the orthogonality of C.
r

2
Now let Ul = Z] and U2 Zi=2

Zi, then by part (i) of the problem

U feod
1 =
P ) = E Bty .

Further it is well known that U2 has the (central) xz—distribution with
(r-1) degrees of freedom.
Finally since U = U 4-U2 is the sum of independent random variables, the

1
density function is given by

Uy - . -
Py )= (b, % £, (w) = IR (g ¢ ) =

= I P Wf

(u) ’
k=0 r+2k
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where "+" denotes convolution (cf. any textbook on probability theory).

For an alternative proof using characteristic functions see SEBER (1966),

pp. 5-6.

Problem 3.

(i) Define U= Z (Y /O) and V = Zl st (Y /0) Then W=U/V. Note
that U and V are 1ndependent and have the noncentral X —dlstrlbutlon with
r degrees of freedom and noncentrallty parameter w 0_2 Z: I ni (cf.

Problem 7.2) and the (central) ¥ -dlstrlbutlon with (n-s) degrees of
freedom, respectively.

Therefore the density function fw(w) of W at w is given by
o0
fw(w) = J fv(v)fU(vw)vdv,
0

where fV and fU denote the densities of V and U, respectively.

By (86) and Fubini's theorem it follows that

w2 (£w2)k o e-%v(l+w)v%(r+n—s)+k—l fr+k-1

W
f(w)=e? T ; dv =
k=0 & 0 T(Jr+k)T(}(n-s))2 (PTSHTIHK
12 e 2 k fr+k-1 © -1t l(r+n—s)+k—
=€ t z ck(ki') = I(r+n-s)+k . 3 (n-s+ )+kd
k=0 * (14g) 207078 0 I'(i(r+n-s)+k)2 r

RO L

T 1 — H
k=0 k k. (]+w)§(r+n s)+k

T(%(r+n—s)+k)
where Cp F( T+ OT ([ (n=s)) ° as was to be proved

If the random variable A has the noncentral X —dlstrlbutlon with r degrees
of freedom and noncentrality parameter w and the random variable B has the
(central) Xz-distribution with (n-s) degrees of freedom and if A and B are
Ar~]

B(n-—s)"1
the noncentral F-distribution with r and (n-s) degrees of freedom and

independent, then by definition the random variable C = has

noncentrality parameter wz. -1
Ur

Substituting U for A and V for B it is immediate that (n-s)r_lw = —z~——;:T
V(n-s

has a noncentral F~distribution.
(ii) Since P{B = b} = P{W < b(l—b)_l} the density fB(b) of B at b is
given by

£©) = -0 10-07 = £ P (e

k=0 £r+k,£(n—s)(b)’
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12 k
where Pk(w) = e 3V (iﬂ) and
- _L(ptq)
&,q® = Ty

P 1-5)9!, 0<b <1, p>o, q>o0.

Problem 4.

(i) In the case of noncentral xz—distributions with r degrees of freedom

and noncentrality parameters wg and W%, wg < w%, we have for x > 0

200 8 by (0 /oy o) =

¥ h0d aphE I MR L
_ k=0 ki 23THRT(frak)
o 2 2 k 1 k
r o tWo (WY ! ML L
k=0 ki 22Tk (frak)
(o]
z bkxk
. k=0
oo k *
z X
k=0 &
w2 etk 1w Gudk
_-hd Gy = Vo lil 1
where b, = e k! TUoK) (k 2 0) and & T ¢ ki T(ir+k)
b b
(k = 0). Since 7§L.< =kt (x> 0) by w% < w%, we have
k P+l
>3 o ® ®
< z nbnxn ]>( z akxk) - ( X bnxn>< x kakxk 1)
£'(x) = 220 k=0 ~__n=0 k=0 =

(5, =)

k+n-1
b X (n—k)(akbni-anbk)x

_ k<n
e
2
( p2 akxk)
k=0

Hence f is increasing.
In the case of noncentral F-distributions with r and (n-s) degrees of
freedom and noncentrality parameters w% and wz, wg < w%, the density
functions are for w > 0
w2 e Gk (w1

k=0 k k! (1+;1.:;w)§(r+n—s)+k ,
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I'((xr+n-s) +k)

= i=0,1.
where ¢ = TIriT (3 (a-s)) ° ’
=L w
Since z = llii:?——- is an increasing function of w, it suffices to show
Pras v

2.k
e_%wl ;:" (ﬂ)]) k

c — 2
e_%wo p ckfé%gl- k
k=0 '

is an increasing function of z. This is done in the same way as in the

case of noncentral.Xz—distributions.

(ii) The hypothesis H' : wz < wg (wo > 0 given) remains invariant under
the groups of transformations G
G =1,2,3) 0% = ¥%.

By part (i) the family of densities pw(w), given by (6), has monotone

l,G2 and G3, since for all g; € Gi

likelihood ratio in w. By Theorem 2, Chapter 3 there exists a UMP
invariant test with rejection region W > C', where C' is determined by

1 =
Pwo{w >C'} = a.
Problem 5.

(i) The random variables Y .,Yn are independently normally distri-

1
buted with (unknown) common variance 02 and means E(Yi) =N
i = 1,.0.,8, E(Yi) =0 i=s+l,...,n (s < n). We wish to test
H: Ny = ... =N, = 0 (r £ s < n). Let

Q. = {(0,...,0,a a0 ,T) o, eR(j2r+1),T>0},

H 1 .
Q= {(al, s, T) o eR (12j<s),T>0}
and
QK =0 - QH
_ T 2 _ ¢n 2 v _ <8 2
Furthermore 1let U = Zi=1 Yi’ vV = zl=s+] Yi’ u' = zi=r+1 Yi'

The joint density of Y]""’Yn under 0 = (nl""’ns’c) € 2, can be

written as

. s n
(v 5y,) = (0V2M) " exp {-E%ZLEI (yi—ni)z + 3 yz]}
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Let @ = w(YI,...,Yn) be a level 0 test for H. The power of the test

against a 6 = (n .,nS,O) € QK will be written as

12
BLD(G) = Eg (Y],...,Yn).

Let P be the class of distributions of Y = (Yl"'

"Yn) as O ranges over Q.

We also write y for (yl,...,yn). Now suppose that ¢ is umbiased.

Since P has the property that the power of any test for H is continuous

in 6, unbiasedness implies similarity (ecf. p. 125). Therefore, from now

on we suppose that @ is a similar test. If w denotes
between QH and QK then w = QH.

The next step is to prove that @ has Neyman structure
Yr+l""’Ys’ U+V+U' are sufficient with respect to

meters nr+ "ns and O on QH’ as is clear from

peee

- S
ho(y) = (ov2m) % exp (--2%7 by n2.>-

. 1
i=r+]

L(E v 2 2
. - .+ .+
exp 207 \;2, b imas] ¥i fert

for 6 € QH.

This constitutes an exponential family of the form

k

Y
dPg(y) = C(8) exp{ z ejT;xy)}du(y),
j=1
with
a. 0, =-—1 8, = o—zn i=2 s—r+l;
. 1 20_2’ j j+r_]) J s H

b. k = s-r+l;

n 2

* * .
c. T, =2, ] Tﬂy)—y 3=2,...,8-r+1

jtr-1’

d. (8 = (oV7m Memp (L5 x5 D)
20 i=r+l 'L
e. | n-dimensional Lebesgue-measure.

*

* * *
Let T =T (y) = (T](y)a""TS_r+1

.

The set

= - ] . - —2
{000, )8 = ~T 8 =0 Npe
« €
nJ
= (=,0) xR*"

the boundary

. The statistics

the nuisance para—

2 5 -2
y.> + X n,o yi],

1 i=r+]

.
3

r i=2,..,5-r+1;0 > 0;

R, j=r+l,...,s} =
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contains an (s-r+1)-dimensional rectangle. It then follows from Theorem 1,
Chapter 4  that the family of distributions PH of Y under H (or he(y),

6 € QH) is complete.

Theorem 2, Chapter 4 then gives that all similar tests have Neyman

structure, i.e.
T*
Elo(¥) | t*] = o a.e. PH .

Notice now that once the values of Y ,YS are given, the value of U’

170"
is completely determined. Therefore the above may be interpreted as:

"the conditional probability of rejection given Yr+ ...,YS and U+V

‘l’
equals O a.e.”

as was to be proved.
The optimality of the unconditional test may now be proved through the
optimality of each of the conditional tests that are obtained by con-

. . *
ditioning on the outcomes of T .

. r 2 n
Introducing T(y],...,yn) = (yr+1,...,ys, Zi=1 v+ z

i=s+1 Y
T(Yl""’Yn) = (Y ..,YS,U-PV), and writing (for convenience)

2
i), so that

r+l1?°
T(y]’-"yyn) = (tr+1:"

optimality of the unconditional test may be proved by maximizing the power

.,ts,w) = t, it follows from the above that the

of the conditional tests given T(Yl""’Yn) = (t:r ...,ts,w) (or

+1°?
T(Yl""’Yn) = t), for each t separately.

Now let hg(y,...,yn) be the conditional joint desity of Y]""’Yn given
T(Yl,...,Yn) =t, 0 ¢ Q. Let ke(yr+1,...,ys) be the joint (marginal)
Ys’ 8 €}, Notice that ke(y

density of Y ..,ys) depends only

r+l1?°
LR and 02, Let ge(t) = ge(tr+1,...,ts,w) be

.,YS,Ui-V) under 0 € Q.

12700

on the parameters nr+]"'

the joint density of T(Yl""’Yn) = (Yr+1"'

Because U+V is independent of Y ..,YS we have ge(t) =
ke(tr+1 soe

We now have (cf. RAO (1973), p. 99)

r+1°°
.,ts)fe(w), where fe(w) is the density of U+ V under 6 ¢ Q.

he(w) hen T(y)

e when T(y) = t
hg(y) = ge(t)

0 otherwise.

Now let 60 = (0y...,0 ..,ns,O) € QH be fixed.

Mpys
Define the sphere S as a subset of QK as follows

S = S(nr+l,---,ns,0§0) =
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Q

2
= {(al,..,as,T)e QK: 1

2 .
I - o aj=nj (3=1r+1,..,8);T = O}.
1

1 Mn

1

Consider the reduced problem of testing H' : 8 = 60 against K' : 8 ¢ S. We
now obtain the conditional test for the reduced problem that maximizes

the average power against S.

Let O ¢ S. Then provided T(y],...,yn) = (tr+],...,ts,w)
t
o B g & T e B e ) Ey
0

) hy(y) feo(W)
heo(y) fa(w) 2

because keo(tr+],...,ts) = ke(t .,ts) for 6 ¢ 8.

410"
Here fe (w) is the density of a central Xz—variable and fe(w) the density

of a noncentral Xz—variable.
A straightforward application of Neyman and Pearson's lemma to

t t .
heéy],...,yn) and the average of he(yl,...,yn) over S, i.e.

[ bi(yan/ ] aa,
S S

where 6 ranges over S and dA is the differential area on the surface of S,
gives that the average power against S is maximized by the test that
rejects when the ratio of the average density against S to the density

under H' is larger that a suitable constant, i.e. when
t -1 t
[hy (0] ° f ho(yd)aa / [ aa > c(r),
% s O s

or, equivalently, when

hg ()
j—t——-dA > C(t) [ da
S hg (v) S
0
Now we have
hg () ()  £5 (W)
[ ——aa =] A.

- d
t hy (y)  £,(w)
5 g (¥) s 78, G
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In this expression the factor fe (w) /fe(w) still depends on 6. However,
the density fe(w) depends on © only through its noncentrality parameter
wz = z§=l nio_z (6= (p5.005n0), which is constant on S: Y2 = p?
for 6 ¢ S. This means that the factor feo(w) /fe(w) is constant with
respect to the integration over S and may thus be absorbed in the con-
stant C(t).

Furthermore, we have, for 0 ¢ S,

n 2

-n i s 2
hy (y) ) (0/21) " exp P—EEZ[Zizl G B yi]} )
h, (y) -n 1 .1 2, s _\2,_ (n 2
89 (0v2m) “exp { P (2 Vi Ty OO+ I i1

T

'y.n'

e (2 Tgh - 7).
i=1

Again the factor exp (—%pz) may be absorbed in the constant C(t).

Thus we obtain that the optimal conditional test rejects when

T y.n.
fexp(i 121>dA>C(t).
s i=1 O

Keeping in mind that we still work with a fixed S we define
r
= yini
g(y],....,yr) = é exp <-j_§] -—02—>dA

Considering n = (nl,...,nr)' and ; = (yl,...,yr)' as vectors we have

M5 = lInlt ¥l cos (m, %),

that is
r r T 1
2 2\2 ~
z n,y; = ( r on. T y.) cos {(n,y),
. i . i i
1=1 1=] 1=1
or, equivalently,
I 1 def i
z = p/u—cos (n,5) "= pYu=cosB.
i=1 0’ o o

By symmetry the average of exp (p/u %cos B) when 1 ranges over S is

unchanged when V is replaced by an arbitrary vector of the same length
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as y. This means that g(¥) depends on y = (y],...,yr)' only through u. So
write g(?) = h(u).
Consider a fixed y = (y],...,yr)'. Let S' be the subset of S for which

0 =y £ 4w, where Y is the angle between V and 1. Then
h(u) =  [exp (pvu é cos Y) + exp (~ovu é cos Y)1da,
S

which is an increasing function of u.
The conditional test for the reduced testing problem: H' : 8§ = 60 against
K' : 0 ¢ 5, which maximizes the average power against S is thus given by

the rejection region
(n h(u) > C(t).

Since the test with rejection region (1) is independent of the particular
90 chosen and independent of the particular sphere S, it follows that this
test may also serve as a test for the original testing problem.

This means that (1) is the conditional test which maximizes the average
power against alternatives on a sphere S for every such sphere.

Finally, because under H U/ (U+V) is independent of U+V, it follows

that the unconditional distribution of U/ (U+ V) and the conditional dis-
tribution of U/ (U+V) "given U+ V" are the same. Because h(u) is a mono-
tone function of u this means that the rejection regions determined by
either h(u) > C or u/ (u+v) > c* are the same. This completes the proof.
(ii) Consider now the class of all similar tests whose power depends
only on p2 = 0-2 Z§=] n?.vHence the power of such tests is constant over
the sphere 8. The test given by (9), Section I or by (1), part (i) of
this problem, now maximizes "the" power against alternatives on spheres S.
Because each alternative is an element of some sphere S, the test 9),

Section 1 is UMP among all those tests.

(WALD (1942), HSU (1945))
Section 2
Problem 6.

(i)  Without loss of generality we may assume that 6 = B]: consider any

nonsingular matrix B with first row (el,ez,...,es). Put B* = BR and

* -1 _ * _ S _ _ -1 _ Kok
A =AB ', A= (aij). Then B] = Zi=1 eiBi =0 and § = (AB )(BB) = A™R
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2

(it is implicitly assumed that 53 e, > 0).
P y i=1 i

Following the hint, using column v;ctors only we infer that Y
where A = cia] def Z?=] 15%51° Now var(YI) = A2 var(Bl) =

22 var(Zi diXi) = 2252 -Z'd%, where 2 = Var(Xl) = var(Yl). Hence

Al = (= aD* and |v,| = |B,| /VEd] . Thus, by (12) and (13), the
rejectiqn region for testing H(0) : 61 = 0 against K(0) : B] # 0 is given

by

1= Ay

(o4

IBII /VEd;
VIR, -E)Z/ (as)

> C

0

For any B?, the transformation X = X-B?al reduces the problem of testing
ue) : g, = 8
(B]--B?)a1 + Z§=2 Bjaj' Now the desired result follows.

(ii) Again we may assume, without loss of generality, that 0 = Bl'
With Y]""’Yn’ Cpseresly
nl = E(YI) = E(c;X) = cii =% B,c'a, = B.cla
gonal to each a

against K(B?) : B] # B? to the previous one, for E(X*) =

,¢_ as in (i) we have Yi = ciX, i=1,...,n. Hence
1%13; 1613 = ABI, because ¢, is ortho~

e eadye Since Myseeesny do not involve Bl’ the hypothesis

Bl = B? is equivalent to n1==n? with n? = AB?.

Now consider any fixed n?. Define the groups
G] = {g : g(yl s ’yn) = (yl ,y2+k2a .. ’ys+ks’ys+1 3. ’yn) ’k2’ . ’kS E]R},

0y rg s = —nPy4+n0 = - =
Gz(nl)—{g-g(yl,--,yn) (T =N 5¥, 50 5Y ), T= 1o T 1},

93(71?) ={g: g(y1 seesy,) = (C(yl-n?)m?, CY,sesCY ) sC #0}.

27"
These groups leave the testing problem invariant. In the same way as on

p. 267 we find that the test that rejects when

_0
ly, =/l

>C0

n

Zi=s+l

Yi / (n-s)

is UMP invariant with respect to the group G(n?) generated by G],
Gz(n?) and GB(n?)-

It can be easily verified that the group G obtained from the G(n?)'s by
varying n? consists of all transformations of the form

g8y, ».05y) = (Tay +8 ,0,48 ,...,0y +8_,ay

n . sayn) ’

s+l’""
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where a;61,...,6s eR, a#0and T ¢ {~1,1}.

It remains to show that. the confidence intervals for Bl given by

s(y) = {8, < kl,

b3 2/ (n-s)

i=s+17

in terms of the yi's are uniformly most accurate G-invariant. Consider

any fixed g ¢ G. Then

1
= (toy, +8 )-8
slgy)] = {81 : 'An 1 12 ll ; Sk} =
{zi=s+1 (ay )™/ (n-s)}z

1 1 51
—{s , ]XY'W“‘]‘T)I <k}
- 1 * l -
Fle 717 o

8
{8y & =B~ 5L) s} =

{raB; + %L : B € S(»} def g*8(y).

Hence the confidence intervals are G-invariant.
Now by Lemma 4 (ii), Chapter 6 they are uniformly most accurate
G-invariant and hence the intervals (90) are uniformly most accurate
invariant with respect to the group 6" induced by the inverse canonical
transformation x = v YiCuo

i=}] 7i71

Its elements are of the form:

s n
*x = =
g™ (x) (Tocy]+61)c1+ .}: (uyi+6i)ci+. b (ocyi)c:i
i=2 i=g+1
n s
=q 'Z yici+oc(‘r—])y]c] + ‘Z Gici =
i=] i=1

= 0Lx+0L(T~l)c]cix+ £ =
=o[I+ (T—])clcl']x+ £,

Where o # 0, T ¢ {-1,1} and & ¢ HQ.
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Problem 7.

First we change notation a little: let Zij (3= 1,...,mi) and
Yij (j= 1,...,ni), i=1,...,p, be independently normally distributed with
common variance 02 and means E(Z,.) = L. and E(Y..) = 2, +A.

ij i ij i
We now have a situation as has been described in Problem 6 with n =

z ni + vai, s = ptl, B = (C]’..‘,EP’A)" X =

seensY A an

pn) s

(Zyqseeeslyy ""’Zpl""’zpmp’YII""’Ylnl""’Ypl

n X (p+1) matrix of rank p+1 and 6 = A.
The problem becomes that of minimizing
P [ mj 2 nj
(2) b3 [ L o(Zg-t) + I
i=1tj=1 Y j=1

over all possible values of C],...,Cp and A, and substituting the mini-

2

mizing values Zl,...,Ep and R in (89).

Differentiating the above sum of squares and setting the partial deri-
vatives equal to zero we get the following system of linear equations in
Cl""’cp’ A

B

1 -~ - ~
Y (Z..-L.)+ ® (Y..-2.-8) =0, i=1,...,p
. ij i - ij i
=1 i=1
p nj -~
r ¥ (Y,.-tz.=-A)y=0
o, ij i
i=1 j=1
with solutions
- - P m.n,\"1 P mng
A= e)=(z .1> (Yi_—z )
i=1 1 i=} 1
o -1
i = Ni (m,Z -FniYi.-n A, 1= 1,...,p,
where
1M ;M
N. =n.+m,, Y. = Y Y Y., and Z, = v X Z...
i i i i. ij= ij i- i je1 ij

Since (2) is a sum of squares these values give a minimum for (2).
Substitution into (89), Problem 6, yields the rejection region of the
UMP invariant test for H : A =0 (60==0). Notice that since
- mj n; 0 m
= i 3
e f(ghe)ert gk,
i j=1 1 ij=1 "1

m;n;
where D =X —%—i- the factor VZZd% in (89) is equal to
i i
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2 1
-2 min. I‘li 1 2 _ -2 nimi % _ _%
O R A= U]
1 i 1 i 1 1

Problem 8.

As in Section 1, Chapter 7 we reduce the problem to a canonical form.
PPN &

This yields the independently normally distributed variables Y
with common variance Og and means E(Yi) =N for i = 1,...,s and E(Yi) =0

for i = s+l,...,n. Hence their joint density is

S n

- 1 2 _ 1
(0,¥2T) nexp[—-—-z- T (y;-n) - I y.}.
0 205 4=1 "+ 1 20f j=gt1 *

The hypothesis to be tested reduces to H : np = ...=n.= 0 (r <s<mn).
By sufficiency we may restrict attention to Yl""’Ys (00 known!).
Now consider the groups of transformations G1 and G2 from p. 267.

The hypothesis remains invariant under Gl’ which leaves Y ..,Yr as

1*°
maximal invariants.

G2 also leaves the testing problem invariant. A maximal invariant is

U= Z§=] Yi . Hence a UMP invariant test can be chosen to depend only on U.

As has been shown on p. 267 wz = ZE=1 n%

and Eé. By Theorem 3, Chapter 6 it

is a maximal invariant with
respect to the induced groups E&
follows that the distribution of U depends only on wz. To be more precise,
U has the noncentral Xz—distribution with r degrees of freedom and non-
centrality parameter wz/cg. Hence the principles of sufficiency and
invariance reduce the problem to that of testing H' : wz = Q0 against

k' s y? > 0.

Since by Problem 4 (i), the class of probability demsities pw(u) of

U has monotone likelihood ratio in u, there exists a UMP invariant test

that rejects when U is too large, that is when
r
U= X Y5>c.o2.

. . w0 2
C is determined by Ic Xr(y)dy = Q.
In the same way as in Section 2, p. 269 we find that
2 .2

n a0 D - noo
U= 2 (X-8) -2 (X-E)"= ¢ €, -8)".
1 1= =1
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Section 3
Problem 9.

Since the variables Xi- (i =1,...,8) are independently normally distri-
buted with means E(Xi ) = ui and variances var(Xi.) = nzloz (1 =1,...,8)

and X, , is distributed as N(u_,n'loz), we have

2, _ 2. 2. 24
E[Z o, (X; -X 7] = E[(Z n;X] ) -nX; ) -nX_ ] =
= [z n (o}’ +1D)] - n@lo? +1?) =
= (s=1)0% + £ n (- u )’
and
n‘
[ o (%; - X )]=E{Z[(Zl x?.)—n.x? ]}=
L\ ij i%ie
i j=1 itMy=1
Moo 9 12,2
=X ¥ (o +ui) —):ni(n;c; +ui) =
i j=1 i
= (n—s)oz.
Problem 10.
(i) Transform into new variables Xl'"a Z (i =1,...,8). Then

Xl""’xs are independently normally dlstrlbuted as N(Ei,l) with

= .1
E. = ay Ci.

i
1 . = = T . = =

The hypothesis H §] v CS becomes H' : a1€1 . aSES.

This is a linear hypothesis with r = s-1.

With respect to a suitable group of linear transformations the UMP in-

variant test is given in Problem 8. Its rejection is
S 5.2
(3 r & -E) >,

where C is determined by f X (y)dy = 0, Consider any fixed i.
Since El minimizes ZJ (X E ) it must be equal to X

2 minimizes %: (X. - E )2 sub]ect to aIE] =,,, = aSES, that is it mini-

J
mizes Z (X - a;la E )2 over all possible values of Ei. Hence

e (e 5 )

] J
Now the left hand side of (3) becomes
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i=1 J ]
=5al’? {z. —(z a72>'1<z z.a72>}2 =
1 J J _'] 11
- -1,2 _ -2\-1 -2\2 def
>i:(z ) ()i ai> <f ziai>(- £(Z),0052)),

as was to be shown.

(ii) Following the theory on pp. 270-271 formula (16) and further
we find that U has the noncentral Xz—distribution with r = s-1 degrees of
freedom and noncentrality parameter A2 = f(Cl,...,CS).

Now the assertion of this part of the problem easily follows.
Problem 1I1.

The solution of this problem is based on the following theorem, which
is slightly stronger than that formulated in Lehmann, p. 274 (cf.
RAO (1973), p. 385. Note that we only need existence of the derivative at 8).

THEOREM. If {Tn} 8 a sequence of real-valued statistics such that
VE(TH-B) has the limiting distribution N(O,Tz), then for any function
£(0) which ©s differentiable at 8, the limiting distribution

of /H[f(Tn)-f(6)] is normal with zero mean and variance T2<%g>2.

(i) We first show that for large A the quantity /A(A'IX-I) is
approximally standard normally distributed. This follows by the

Lévi-Cramér theorem, since

E exp [it/X(x“x- 1)] = e—it‘/xE[exp (1—‘%)] =

- it/A it/vVh _

exp [A(e Dl =

2 2 1
exp {—it/x-)w )\{1+i—]-‘/x - 12:_>\ +o<—5—_)\=)]}——> e 3t

as A » o,

Now applying the above theorem with f(u) = Vu gives the required result.

(ii) By the Central Limit Theorem (or the De Moivre-Laplace Theorem)
/E(n_lx-p) is approximately distributed as N(0,p(1-p)) for large n.

Now by the above theorem with f(u) = arcsin /4 it follows that the limiting
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distribution of va [aresin vo~! - arcsin vp] is normal with zero mean
and variance !. In other words arcsin /oolx is for large n approxi-

mately normally distributed with mean arcsin Vp and variance £H .

Remark
A slightly different version of the theorem can be found in SERFLING
(1980), Theorem 3.1.A.

Section 5
Problem 12.

We use the notation of Section 5

Since
rrzx (Xi.k--Ei.)2 =X ¥x (Xi.k--xi..)2 +
ijk ] ] iik ] J
+mIf (X,, -X, -X. +X —Y..)2+
. . 1]' 1+ 'J' Y 1-J
1]
2 2
+mb £ (X, =X -0.) +maI ., -X -B.)" +
N 1. v 1 . - von ]
1 ]
2
+ mab (X...“U) )
-~ 2 ~ =
it follows that in this case o, =a, =X, -X , B.=8.=X., -X
N a . 1 1 lcc ;l. J J .Jl :on .
H=u=X, Yij = Xij-xi_.-X.j.+-X’.‘ and Yij = 0. Hence substitution

in (15) yields the rejection region (30).
Problem 13.

By Problem 4 (i) the family of densities pk(x) of XX has monotone
likelihood ratio in x.

Hence by Lemma 2 (ii), Chapter 3 we have for A < A' and x ¢ R
FAV (x) < F}\(X) ’

where FA is the cumulative distribution function of XA'

Problem 14.

The hypothesis H : o) =09 = ... =0 = 0 is a lipear hypothesis with

n=abm, r=al, s=1+(a-1)+(b-1)+ (m-1) and n-s = abm-a-b-m+ 2,
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Let Eijk = p+ai+8j+yk = a, = ZBJ.= Zyk =0).

Then
TIX (R, -E.)f =515 (X -u-a, =B~y )% =
ijk B ijx M J
=Xrx[(X%. -X, ~X. -X _+2X ) +
ijk ijk “i.. K .ok
& X may) + (X.J._—X“.-Bj) *
LCIPES ST I e GEREENE L
kA T YR
=EEE (X, -X -X. -X ,+2Xx )%+
ijk_ le 1e- C ] k .
2 2
+bm X (X. -X -0,) " +amX (X, -X -B.)" +
. 1 "o 1 . K "o ]
1 J
2 2
+ ab X (X -X ~Y,. )" + abm (X -,
S
because the cross~product terms vanish.
The least-squares estimates are
oc1=x1 -X ,u1=0, BJ.=BJ=XJ—X s
Ve =V =X X, and U=u=x
Thus we have
A T L I s U S S E
13k 1 1 ijk J J
and
rrr &, -6 .02 =bmz (X, -x )2
P ijk “"ijk . e
ijk 1
Hence the UMP invariant test rejects when
2

(abm-a-b-m+ 2)bm Zi (Xi--_ X,..)
=D Iy 55 Xy =X =X <X v2x

*
W

)z > C.

W* has the noncentral F distribution with (a-1) and (abm-a-b-m+ 2)bm
degrees of freedom. For the noncentrality parameter wz we find following
the theory on pp. 270-271,
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P2 = mbo~? T of .

i
Problem 15.

First notice the following symmetry: as given the
factor is a function of the levels i and j of the

k = £(i,j), satisfying

(4) {£,1) ¢ j=1,...,m}=1{1,...,mn}, for
{£¢,j) :i=1,...,m}={1,...,m}, for

level k of the third

other factors,

all i, and
all j.

It follows that there exist functions g(i,k) and h(j,k) such that

j =g(i,k) and 1 = h(j,k) when k = £(i,j). These functions have similar

properties as f (cf. (4)).
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In the following we will indicate by parentheses which index is considered

dependent of the other two:

f1500 7 Bi5ea, 50 Sigk T ®

(1) For any i

=1 = 1 1
T TR R R O e R T

J
and by symmetry

E-j(~) =u+ B,, E..(k) = E-(-)k =u+y, for any j and k.

]

Finally

—_1. =
g..(.) = a ? gi.(.) H.

(1i) Notice that

=Tz [,
1]

(5 £z
ij ()

2
%500 00!

+ (X -X

*3()

+ (X, X -X

2
m.zmb(q—x“b)—%j +mz [X,

1 ]

-X

T Eysay T TR0

i)

]

e (4)

.o

-X

ig(i,0K C(i)ik "

-a,) +
;)

O R U C T el SO S FeR Pl

(k)

ce ()

+2X

g

h(j,k)jk

ZYk=u+Bi

k

_Bj]

2

.(.))]

+

2
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2,2 2
+m§[&.&)—&.b)“m] S RSO Y
+ I3 [x, 12
ij

-X -X -X + 2% .

1500 " () TR0 TR TR

because the cross-product terms vanish.

Hence the least-squares estimates are

™)

a, = X

i T Koy E Ly By =X

_X.

G TRy e T R TR

and ﬁ =X ()"
(iii) First we will establish the dimension of the parameter space
I, = {& : Eij(k) = “+°Li+8j+Y(k)’Z°‘i =ZBJ. =Ly, = 0}.
By part (i) there is a 1-1 correspondence between £ ¢ H and

3m-2
(u ul’ m-l’Bl’ "’Bm—l’Yl""’Ym*l) E]Rm

pondence is linear we have s = dim HQ = 3m~2. In the same way we see

. Since thlS 1-1 corres—

that the dimension of the space

I =1{g:¢

™ B i TR Yo BEy =R = 0F -

is 2m-1.
Hence the hypothesis H : Oy =0y = ... = o= 0 is a linear hypothesis
with s = 3m~2, r = (3m-2) - (2m~1) = m~1 and n-s = mz-(3m— 2) = (m-1)(m-2).

The least- squares estimates of U, a B and Yk under H follow from (5):

&. =0, B B . Yk Ak and u =i
Hence
2 _ ~2 _ ~ 2
: ? [Elj(k) ij(k)] = E ? aj = m ? S RN VR
and
2
22 D500 B0 T oo X TR0 TR0 PR

Substitution in (15) now gives the desired result.

The noncentrality parameter wz is given by
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2

Yo =mo? ¥ [Ei-

(.)‘E..(.) - . oi”

Remark.

For the practical use of latin squares see COCHRAN and COX (1957) or
JOHN (1971).

A theoretical approach can be found in SCHEFFE (1959).

Section 6
Problem 16.

In this situation Yl" ..,Yn are independently normally distributed with
common variance 02 = 03 + 820‘21 and means Ei = E(Yi) =q + Bxi. For

testing the hypothesis H : 8 = B. we have the rejection region (35):
0

lé—sol /X (xi—§)2

> C

I -a-fpt@n O

where B = [z (Xi _32]"1 bX (Yi -Y) (xi -X) and 0 = Y~ éi
For testing the hypothesis H' : o + on = 0g write Ei =

o+ on + B(xi-xo) and we have the rejection region (34):

IB-DOI{nZ (xi-—i)z/): (xi_x )2}%

-~ -~ 2 % > C]’

0¥, -0-Bx; - x )17/ (0-2)}

where B =[x (xi—mz]" (Y, -D)(x;-F) and p = T-BE-x).

Each test statistic is distributed under the corresponding null hypo-

thesis as the absolute value of Student's t with n-2 degrees of freedom.
(SCHEFFE (1958)).
Problem 17.

(i) The hypothesis H : B = § is a linear hypothesis with r = 1 and s = 4.

By Section 6 the minimum value of

2 —_ 12
(7) E [Xi‘OL-B(Ui—'lT)] +§ [Yj_Y_(S(Vj_V)]

is attained at 4 = X, B = [Zi (ui—ﬁ)z]—lzi (Xi—i)(ui—ﬁ), ? =Y and
~ -1 _
3 =15, (v.-9)2 (YL =D (v, -7).

[ 3 (VJ “1] ZJ ( i )(VJ V)
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xu

Défine
_ _ =2 - =2 - - _
U= ? (ui W, Vv g (vj v, qu F (Xi X)(ui W) and
i j i
Syv =}; (Yj-Y)(VJ.—v ,
J

then

2 _ -1 2 -1

B=58 U and =8 V .

yv

To minimize (7) under H, first minimize over all possible values of 0. and

Y for fixed B. This yields a minimum

- 12 = 2
(8) >1: [Xi—X—B(ui—u)] +§ [YJ. —Y-B(vj—‘v')] =
= 82U + V) - 2B(s_ + 5,) +§ x, - )2 +§ ¥; - T2

at @ = X = a and ; =Y = ;.

Minimizing (8) over all possible values of B (= 6) we find

5, A -1 _UB + V8
PEO = By * YUV = Sy

Now the UMP invariant test is given by the rejection region W = A/B > C,

where A is equal to

= {6+ Bluy -] - 18 + Bla -mD? 4
1

@ - 8%+ G- b,

+ X {[7 + S(vj—m] - Iy + §(vj-v)]}2

Observing

2 _ A2 _[a_UB+vi]?_ [v(é—@)]z _ v (3-3)?

B -8 [B "Trf;jf_] = W
and by symmetry

G-B? =

we have
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& & V2UHUZV 2 a2 UV A a2
= - —— = - —_— = _6 1 1 .
A= (B-9) W )2 (B-6) T2 (V+0) = (B-8)" (Ut +v7H)
B equals
o @on-07z 5 -X- Bl =17+ 3 1y, - T- 30w, - 917},

]

W has the noncentral F-distribution with 1| and (m+n-4) degrees of freedom

and noncentrality parameter U)Z = 0_2(8— G)Z(U"1 + V_l).

(ii) The hypothesis H' : a=7Y, 8=08 isa linear hypothesis with r = 2
and s = 4,

The minimum of (7) under H', that is the minimum of

z [Xi -a - B(ui-ﬁ)]2 +z [Yj - a

2
B(v,-v)]
i j J

— n o
— X + —— Y and
m+n m+n

is attained at a (= ‘Y\) = (m+n)_][):i Xi + ZJ. YJ.]

B(=3) = (u+v>"1[§ (X, = ) (u; =) +§ (-, -0 =

= @+NTE X -D (o, -D + T ¥ =D, -1 = (=),
i i 3
since Zi (Ei—ot)(ui-u)_= :‘:.i [(Xi—X) + (X—a)](ui:u = _
= Zi (Xi: X)(ui—TI) + (X-‘OL)Ei (ui—u) = ):i (Xi—X)(ui—u) and of course
., (Y. - .=v) =%, (Y,~-Y A .
3 ( i Y)(VJ V) f ( ; )(VJ )
The UMP invariant test is given by the rejection region W' = P/Q > C',

where

22 = £ {18 + B(u; -] - [d - Bo, -0+
1

+3{I7 + 8(v.-®] - [& - Bv. - 1}2
j J J

and Q = B (9).

Observing

™

{[‘ + B(ui—i)] - [& + §<ui—m]}2

m a = — R 2
z [m X-7) + <s-§>(ui-ﬁ>] -

i=]
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2 2
= mn T~ ¥y2 2~ By2
TE:ESZ-(X ) + (B - B)“U
and analogously

2T + 3v, =91 - Iy + §(vj-—)]}2 -
]

2 ~
_ mén = =2 2 _ %2
m(x VN + (8§ §)4v
it follows that

2P = (X-T)2. —(—m%“n—)q[ m+n) + (B-By2u + (8-%)%y -

=B E-D2ra=GE-D2@ ) + B-HIw sy
m+n
W' has the noncentral F-distribution with 2 and (m+n-4) degrees of

freedom and noncentrality parameter 3 =
o2 l@-N?@+ah + (8- 82w +v ] .

Problem 18.

Differentiating T (Xi -o - Bti - Ytzi)2 with respect to 0, B and Yy we
see that the least-squares estimates must satisfy the system of equations
given in the problem. If (1,1,...,1)', (t],...,tn)' and (t%,...,ti)'

are linearly independent, then the matrix

2
1 tl t]
o] - .
1 t t2
n n

has rank 3. By Lemma 1, Chapter 7 this implies that

]

T 2
EY- E? , wheret =
3

has also rank 3 and hence is nonsingular.

It follows that the system of equations has a unique solution, i.e.
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a n~lrx,
71 -1 t
Bl=T 0"l ex;
< -1 2
Y n X tixi

With r = 1, s = 3 it follows by Problem 6 that the UMP invariant test

for H : Y = 0 rejects when

$ 2
]Y!//Zci

> C..
(= (x;-a-Be,-7eD - O

Section 7

Problem 19.

(i) The joint density of Z ,an is given by (4.2) on p. 288.

10
2 o 52 2 _
Let T 0% +noy and AO l-anO and

e=(—’ . )19=/s_n‘ul9=_l
272 2A602 T 2 72 202
and
S S n s
v= 3% 22, T, =12 T.= % ¥ 22+ 5 22

Cog=p i1 11772 7 4oy j=2 i By i=1 il

Then this density can be written as

C(6,0) exp (BU + ﬂlTl + ﬂsz)

The hypothesis H1 : di/oz < AO is equivalent to H] : & < 0, so by Theorem
3 of Chapter 4 there exists a UMP unbiased test.
When 6 = 0 the distribution of the statistic

(U—Tf)/A(; ~ (éz Zi]>/12
S

T,-U/A; n
2= U/bg (}: z zz..>/72
i=1 j=2 13
does not depend on U, 0 or T and hence by Corollary 1 of Chapter 5 V is
independent of (T],Tz). By Theorem 1 of Chapter 5 the UMP unbiased test

has rejection region given by (43)
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TR J“Z )/<n-l>s

This is (when 6 = 0) the ratio of two independent variables which are chi-
square distributed with s-1 and (n-1)s degrees of freedom, respectively each
divided by its number of degrees of freedom; so the constant C can be

determined by means of an F~distribution:

Fs-—l,(n—l)s(y)dy T a

a8

2 F 72 //%2
(U"T;)/Aé _ (i=2 i])
- ! S n s
Ty = T1/bg ( Iz z?.) o + < s 22 ),//2
i=1 j=2 11 i=

Under H2 : A= AO which is equivalent to H2 : 8 = 0 this statistic has a

(ii) Let W =

distribution that does not depend on U, 0 or T and hence W is independent
of (TI’TZ)' Furthermore it is linear in U. So by Theorem ! of Chapter 5
| <W<C,. ,
The distribution of W is seen to be a beta-distribution with $1(s-1) and

the UMP unbiased acceptance region is given by C
i1(n-1)s degrees of freedom. So Cl and C2 are determined by

C
2
L7 B by DO = 1
1

C
2
Cf YB%(S_])’%(H_I)S(Y)(]Y = (l—OL)l{yB%(S_])’%(n_])s(}’)dY-
1

The second equation here can equivalently be written as

2
g" Pi(s+1), 4 (nm1)s VY = 170
1
The uniformly most accurate unbiased confidence sets for A can be derived

from the acceptance region C, < W < C

1 2
8 2 S 2
L Z .
1-Cy j=2 il < 2 < 1-¢, 152 23
C s n 2 C s n
2 5 1 72 o 1 5 5 72

is1 j=2 "ij i=1 j=2 ij
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A 1 TZ
or, with A = —E%— =—I;(_Ez- - 1)

] 2 s
z 2 Iz Z
1{1-Cy j=2 11 O 1{1-¢ j=o il
— -1} < < = -1
n| C, s n - o2 nl C n 2
T T %, 1 Yy I Z
i=1 j=2 1] i=1 J=2 13

Problem 20.

Because E(Ai) = E(Uij) = E(Uik) = 0 the intraclass correlation coefficient

p(Xij’Xik) equals

E(Ai + Uij) (Ai + Uik)

/Var(Xij)-Var(Xik)

Since the A's and the U's are independent we have

_ e 2,2
Var(Xij) = Var(Xik) o} 4-qA
and
EA, +U,.) (A, +U, ) = 02,
i ij i ik A
Hence
%
e g +0A

Section 8
Problem 21.

Except for a constant the joint distribution of Z,., (i =1,...,a;
ijk
j=1,...,b5 k= 1,...,n) is given by (47) on p. 290. This density can be
written in the following form
2 -1
C(G,x?)exp{esl(anAO) +9

2. .2 -1 2
12111‘""2(83* Sl(1+bnAO) )+193s }

where 6 and ¢ = (0],02,33) are given by
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-1 -1
8 = ~}(1+bng) (0% + 0ol +bnod) " + 4(o? +no2)

I
- 2 2 2 2y=1
191 = (abn) *u(o +nOB+bn0A) ,

- . -2
8, =-1(c +nop) O, 3 = "1077,

€(0,9) is a normalizing constant and

2 & > 2 2 2 a b o

8= X z% =2 +8 s-= ¥ ¥ z°%,

1755, M EPER S B S | &
n k n

s2- 3% 1 % 22 .

i=1 j=1 k=2 1ijk

. v o202 oo 23 =1 , L2 2.-1
The testing problem H] : OA(G +n0B) < AO against K : OA(02+n0B) > A

¢t 6 <0 against K, : 8 > 0

is equivalent to H 1

1

Defining
x 2 -1 2. .2 -1 .2
W) = R(ST(1+bnd) "2, L80 w55 (14 b)) TSP
2
1 “f”zﬂl)/@'” i SA/@_”
~ T+bnb 2 = 1+ bnh )
0 SB/(b—l)a 0 SB/(b a

it is immediately seen that h is strictly increasing in the first argument.

If 6 = 0, that is oi

2 2 2 25 (ae
- SA/(U +nGB+bnoA)(a 1)

W, =
sg /(o2 +n02) (b-1)a

= Ao(o2 + nO]23) , then

1

is distributed as Fooi (b-1)a and hence in particular the distribution of V
’
does not depend on ¢. Moreover {¢ : (0,9) € 9} (with Q the whole parameter

space) contains a 3-dimensional rectangle. Therefore by Corollary 1 on p.
2 2 2 -1 .2 .
111° SB+S1(]+bnA0) ,87) and it follows

by Theorem 1 on p. 161 that the test (48) is UMP unbiased.

162 Wl is independent of T = (Z

The density (47) on p. 290 can also be written as

2 -1 2 2. .2 -1
K(e,ﬂ)exp{elsB(HnAO) *0151*‘922111“’3(3 +SB(l+nA0) )}

where 6 and ¢ = (191 ,192,193) are now given by

8 = ~}(1+n4p) (02 +nad) ™! + 4072
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191 = -}(o +n02+nboA)
- 3 2 2,1 = —ig~2

9, = (abn) u(o +nop + anA) , 63 = -io
K(6,%) is a normalizing constant and S%, S%, $2 are the same as above. The
testing problem H2 : O%O 2'<A0 against K2 : §0_23>A0 is equivalent to
H2 : 8 £ 0 against K, : 6 > 0.
Defining

2 -1 2 2 2.2 -1
W, = h(SB(l-rnAO) s Sl’ Z]]l’ s°+ SB(li-nAO) )

2
B 1 SB/(b—])a

]-+nA0 Szl(n~1)ab

it is immediately seen that h is strictly increasing in the first argument.

If 6 = 0, that is Gg = AOOZ, then

sﬁ /(o2 + nolza) (b-1)a

SZ/OZ(n—l)ab

N O*

is distributed as F and hence the distribution of W, does
(b-1)a, (n-1)ab 2

not depend on §. Moreover {8#;(0,9) ¢ Q) contains a 3-dimensional rectangle.

Therefore by Corollary ! on p. 162 W; is independent of T =

(S2 f]l,82+82(1+nA0) ) and it follows by Theorem 1 on p. 161 that the

test (49) is UMP unbiased.
Problem 22,

If we put (X. $1700 1n ) = 1, i=1,2,...,s, then the X are independent
by assumption.

Each Ki, 1 £1i< s is subjected to an orthogonal transformation

1 i) ¢
AT Szt Cing
- - ) ) - (i)
L= (gpa¥ypeee sy ) = Xt - = x;C
1 ci) i)
/Ay n;2 ° ning

so that Y, = /niX, = /n](u+A;+U ).

Furthermore for 2 < j < n., 1<ix<gs
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ng , nj n; .
v..= ¢ Wy - % C(l)(U'*'A +vu, ) = ¢ By,
1 k=1 kj “ik k=1 kj k k=1 kj ik

since by orthogonalit g? (1) - =0,2<j<n 1 £1<s
y g Vo Gy T 025 s, 1S

Hence the Y.j with 2 £ 3 < n., 1 £ 1 < s are independently normally dis-
tributed with zero mean and variance 02. They are also independent of U

since (/—"U s X, Y )' = C(l)(U Uln)' and thus 1ndependent of

i2*°° ii 12

Y. ., 1< i S s. Since the X. are independent, the variables Y. , 1 £ i < s
1l ~1 ~il

are independent with mean Vni11 and variance 02-+ni0i.

The joint density function of the Y's is then

8 - .- -
Bl ]n o (i ”(ozm.cz) :
i=} (2m) 1 i’A
s (Y, —/E;u)z s nj Y?.
exp{— r Lty ¥ IJ}.
i=1 2(02+n,0§) i=1 j=2 202
1

Problem 23.

(i) First of all we establish a more convenient notation for the
nested classification with a constant number of observations per cell. We

write for m factors

n, (2) (m)
X: s . = U+F; TR D . +Us s .
Ppdgeeidpio g H i 1112 RTINS SR S VNN S S

with ij = l,...,vj for j = 1,...,m+1. (I.e. V1

All these variable are assumed to be independently normally distributed

observations per cell.)

with zero means and with variances 02,02,...,02 and Oz,respectively.
1’71 m
We now proceed to prove the existence of an orthogonal transformation

to variables 21112 ceipigg » the joint density of which, except for a

constant, is equal to

1

(10) exp{—
2(0% +Vyp4 | OA Vg | VIO2_hL L 4V

)
m+1vm"‘v20])
—— 2
x - - e e L3
((211...1 Vi Vp otV W iz=2 21111...1> +

1

Py 2 7 2
2(0%+v +10m+vm+1vm0m_1+...+vm+lv ...v302)

x
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X ;l ;2 Z2 .
i=1 1,22 1iipleeed
- 1 X
2(02+vm+102+vm+]vmo§1_]%-...+\)m+1\)m...\)40%)
v, Voo,

Vv
1
x 55 Zijipiql..
1

i =] i2=] i3=2
Vi \)2

——t 5 ¥ g2 *
) /2N SN 1P, PR S |
(0% +Vpe105) i=1 iy=1 i =2 172 m
1 ;1 ;2 Vmel 2 }
‘ 1 12.. 1m+l ‘

202 ij=1 ip=1 i41=2

The number of indices of the Z's is m+l in this formula.

The proof is by induction with respect to the number of factors. For m = 1
and m = 2, the existence of the orthogonal transformation is proved by
Lehmann in Section 7.7 and 7.8, respectively. So consider the (mt+1)-way

nested classification,

X.: » . v =

1]12- ..1m+11m+2
(1, §(2) (m+1)
u+F; 4.0+ Fo, . +Us . . .
11 l112 S L RRRR S B B SRR S L)

For fixed il,i 11 consider the v independent variables

2,.--,

X. - . R P .
11,0001 ll’ 4 i4i,...1 Y

m+2

»

m+1 mt2
In the usual way there exists an orthogonal transformation to variables
Y, - : A : h that
PE TR S L ARAE A T U TRRE S Ay T a
Y. . . = /v X3 . =
Tyige.eipyql Vi+2 /RREE S

/_——_u + Jb ((1)+. plmD)

1112'..1111“1"1 1112-.-1m+1')

and the Y; ; are independent variables with zero expectation
itgeee m+1
and variance ¢ for 1 > 1
mt2
On the other hand, the variables Y; ineol have exactly the structure
“tm

iyip..
of the XiliZ"‘ ime] in the m-way nested classification, i.e.

= g+G§1)+G§2} +. (m) i Y

i‘iz...im+11 1y 1in ii,. 11i2...1mim+1
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g£=W

m+2
¢

) - A Trd)
1]12...1j

mt2 1 12

v =5 <(m+1> C )
iydge.ipingg mt2 ERE RRTE S Lyigeaedipyye

i=1e..,mg

The expectations of the variables G and V are zero and the variances

T%,T%, ..,T2 of G(:),. GiTiz i are equal to T? = Vm+20§, j=1l,...,m
: w2 42 2
and the variance T of V1]12"'1mlm+1 is equal to T O+ V00

Assuming that the induction hypothesis (the existence of an orthogonal
transformation leading to (10) holds in the m-way nested classification,

it follows that the variables Y; .nﬁll may further be transformed by

1]12...1

an orthogonal transformation to variables Z; the joint density

]iz...im+11’
of which, except for a constant, is given by (10), provided that the proper
replacement of variable and parameters has been made.

After completion of the transformation by putting

Zs - . . =Y. for i > 1
Tyigeeedpyipy  Tipdige.dp i, w2 ’

we find that the joint distribution of the Zi]iz. is given by the

crdge1ime2
equivalent of (10) for the (m+1)-way nested classification.
Herewith, the existence of the orthogonal transformation leading to (10)

has been proved.

(ii) Two hypotheses of interest can now be tested on the basis of (%)

2 ) 2 2 2
H]. 01/<0 +Vm+1°m+\)m+1\)m°m-1+‘" Vit 1 Ve - - 307)<A
. 2// 2 2
Hz. (0 o vm+1\)m°m-1+" Vot Ve - v4c3> AO
Let
Vi V2 Vi,
s, = I b2 z Zi i i i=1l,..0,m
1]=1 12=l i,=2 172°° 73
and
, ViV Vit
=3 =z .z Z5 5
i1=1 12=] i =2 1727 " "mt+1
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Following the same reasoning as in Section 8 for the case of two factors,
P 2 2
but now conditioning on the event S2 = 82 Aeee ANS =58 A5, = 52 we
3 3 m m 2

obtain the following (conditional) tests:

for H, we have the rejection region

Sz/ v.-1)
W* - 1 1 1 > c
1 1+v,V,A 2 R T
27370 52/ (\)2-—1)\)]
for H2 we obtain
2
. i SZ/ (\)2—1)\)1

W, = . 2 C
2 1+ \)3A0

2 2°
s3/ (\)3—1)\)2\)1

These tests are in fact the same as the tests (48) and (49) on p. 291
because H, and H

1 2
fication.

only concern the first two factors in the nested classi-

Section 10
Problem 24.
First we prove the following lemma.

LEMMA. Let Y] seoe ,Ym be independent p-dimensional random vectors whose
probability distributions are absolutely continuous with respect to
Lebesgue measure on RP. Then

1 when m

A
o

(11) P[Yl,...,Y are linearly independent] = {
m
0 when m

A%
o
N

PROOF. For m > p and for m = 1 (11) trivially holds. Let 2 < m < p.
Define
n
Ri(y]’- . ’ym) =Ri(y] seve ,Yi_] ’yi+] PR ,Ym) = {jEI O"ij : aj EJR} ’
J#1
that is, the space spanned by the vectors yl""’yi—l’yi+1""’ym' Now
for any YyoresTpe Ri(y],...,ym) has dimension < m-1 < p. Hence its

Lebesgue measure is zero. Thus

B(Y, e Ri(y1 seeesY ) | L RTINS SRR ST P seeesY =y )

= P(Yi € Ri(yl""’ym)) =0
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for any MATRREN A and therefore P[Yi € Ri(Y]""’Ym)] = 0 too. So

m
P{Y],...,Ym are linearly independent] =1 -z

Z P(Yi € Ri(Yl se e ,Ym))

= 1.

1

Throughout this problem 6 = (£,A ).
E,( ZyiZyi). .
. 1._. (2'z 6 Xﬂ:] ki®kj’1
i) Because EG(E S) —-Ee\ p ) -
m
e PoPifdyy L
m ij?”?

és is an unbiased estimate of A_l.

By Lemma 1 (ii): 8 is nonsingular if and only if rank Z = p and m > P.
If m 2 p, P6[6 is nonsingular] = Pe[rank Z =7p] z

2 PB[ZI""’Zp are linearly independent] = 1 for every 6 by the lemma in
this problem.

If m < p then by Lemma 1 (ii) & is singular. This completes the proof.

ii) The U's are eliminated through Gl' Since the r+m row vectors of the
matrices Y and Z may be assumed to be linearly independent, any such set

of vectors can be transformed into any other through an element of G3.
Hence the Y's and Z's are eliminated. The only test that is invariant under
the groups G] and G3 is (Y,U,2) = o.

Problem 25.
First we prove the following extension of the lemma in Problem 24.

LEMMA. Let P = {Pe : 0 ¢ Q) be a class of absolutely continuous (w.r.t.
Lebesgue-measure) distributions 0n:mp(r+m). If P is a class of joint dis-
tributions of (the elements of) Y(rxp) and Z(mxp), then for any u #+ 0

|Y'Y-+uZ'Z| # 0, P-a.c.,

provided p < r+m.

PROOF. The following result is used:

(*) if f(xl,...,xn) is a polynomial in real variables KpseeesX which is
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not identically zero then the subset N = {(Xl,...,xn) : f(xl,...,xn)

= 0} of B® has Lebesque-measure zero.

(cf. OKAMOTO (1973)).

Let U # 0 be fixed. Define fU(Y’Z) =-|Y'Y-+uZ'Z|. Because the elements of
Y'Y and 2'Z are polynomials in the elements of Y and Z, respectively, fu
is a polynomial in the elements of Y and Z. By (*) ard absolute continuity
it suffices to show that fu is not identically zero. Because p < r+m

there exist YO and Z0 such that

(%l T1,Tp

L2gdn Lo Jurr-p
P P
when p £ r

1
Then £ (Y.,2.) = { _
Horo up T when p > r.

Hence fu(YO’ZO) # 0, which completes the proof.

Note. The result follows easily from the lemma in Problem 24 when u > O.
However for the present problem it is essential that we also consider the

case U < 0.

Now let P be the class of joint normal distributions of (Y,Z).
(1) If p<rtmand V=7Y'Y, S =2"2Z, the lemma implies that V+§ is non-
singular, P-a.e.

Consider the roots XI(V,S),...,XP(V,S) of the equation (94) on p. 318
v - a(v+8)| = 0.

We will show that they constitute a maximal set of invariants w.r.t. the
groups generated by GI’GZ and G3. Since (V,S8) is a maximal invariant w.r.t.

the group generated by G, and G3 (p. 297), it suffices to show, by

1
Chapter 6, Theorem 2, that AI(V,S),...,X (V,8) is a maximal set of in-
variants w.r.t. the group G; = {g* : g"(V,S) = B'VB,B'SB), B nonsingular}.
Since B'VB+B'SB = B'(V+S)B this can be shown in the same way as on

p. 298, which completes the proof.

(ii) In the same way as on p. 299, first paragraph we find that
p-min(p,r) roots of (94) equal zero (P-a.e.). As on p. 298 there exists

a nonsingular matrix B such that B'VB = A and B'(V+S)B = I, where A is a
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diagonal matrix whose elements are the roots of (94) and I is the identity
matrix. Hence B'SB = I-A. Thus the multiplicity of the root A = 1 is
equal to p-rank(S) = p - min(m,p) (P-a.e.), by Lemma | and the lemma in
Problem 24, .

Applying the lemma in this p;oblem ﬁe have, for any constant A # 0,1,

|v~AW+s)[=(1—xf}v— 5= S

(P-a.e.) constant roots, so that the number of (P-a.e.) variable roots,

# 0 (P-a.e.). Hence there are no other

which constitute a maximal invariant set, is p- (p~-min(r,p)) +

-(p-min(m,p)) = min(r,p + min(m,p) - p.
(OKAMOTO, (1973)).
Problem 26.

i) If x is a non zero solution of the equation ABx = Ax with A # 0, then

¥y = Bx is a non zero solution of BAy = )\y.

ii) Applying i) to the p X1 matrix Y' and the 1 X p matrix Y-S—] then
vs™! = yryg™! Iyt. The

only non zero root of the 1 X1 matrix YS—IY' is W = Z?=1 Z?zl SIJYin.

has the same characteristic non zero roots as YS

Problem 27.

The assertion can be proved according to the argument given in Section 10
with the invariance under G2 omitten. However, this argument uses 'the
theory of the simultaneous reduction to diagonal form of two quadratic
forms" in order to show that there exists a nonsingular matrix B such that
B'SB = I and B'Y'YB is of diagonal form with rank min(p,r). For r=1 this

can also be seen as follows. There exists a nonsingular matrix B, such that

1
BiSB] = I. Then YB] is a row vector and there exists an orthogonal matrix
Q such that only the first coordinalte of YB]Q is nonzero. With B = BIQ we
now have B'SB = Q'B;SBIQ = Q'IQ = I and only the upper left element of

B'Y'YB = (YB]Q)'(YBIQ) is nonzero.
Problem 28.

*
Le: Z = (le”;"zml’zi2""’ZEZ""’Zmp)*and E = .
= ' =
(zll""’zml’ZIZ"'"ZmZ""’Zmp)' Then Z 2Q' where Q Ip ® Q, the
Kronecker product of the pxp identity matrix Ip and Q, is orthogonal.
Given Y = y the matrix 6 is a constant orthogonal matrix. By independence

of Y and the Z's we can apply Problem 5.6 in order to prove that given
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Y = y the Z*'s are independently distributed as N(0,1). Since this conditio-
nal distribution does not depend on the value of y the result also holds

for the unconditional distribution of the Z;i and Z* is independent of Y.

Problem 29.

The solution is given in the comments following the problem.

We only remark that the first row of Q has to be taken as

Z1y 2y Zm]
i T

,Zml)Q' = (R,0,...,0). The other rows can be

in order to have (le,...

determined by the classical Gram—Schmidt orthogonalisation procedure.

As to the last three lines of the comments we remark that, after stepwise

reduction, the determinant of § is |§| = R’ Zg;€+] iél (with zal’

¢ =1,...,m-p+1 independently distributed as N(0,1)) and lSll is replaced
by R2.

Hence |gih = 22;€+1 %il’ which has a sz-p+l distribution,

(WIJSMAN (1957))
Problem 30.

Let B be a nonsingular p x p matrix, Then W = YS’IY' = Y(Z'Z)_lY' =
YB((ZB)'ZB)_](YB)'. We therefore may assume that the common covariance
matrix of the vectors Y = (Yl""’Yp)’(zll”"’zlp)""’(Zm]"°"zmp) is
equal to the identity matrix.

Let Q be an orthogonal px p matrix (depending on the Y's) such that
(Yl,...,Yp)Q = (0y...,0,T)

where T2 = ZE=] Yi. Since QQ' is the identity matrix one has

Q) (Q's'Q @'Y = (0,---,O,T)(Q'S_lQ)(O,---,O,T)'

=1 'I‘2
PP

W

where U _ is the element which lies in the p-th row and the p-th colummn of
the matrix Q'S”'Q = @'s"'9)"!. Let v = Q'2'ZQ. Then Uop is equal to the

ratio of determinants lVll / |v|, where v, is the matrix obtained by
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omitting the last row and column of V. Exchanging the role of m and p in
Problem 28 it follows that the Z;i, defined by
* *

sl ) = (2

(Zal"' ap al’

. ..,Zup)Q

are independently N(0,1) distributed and independent of Y (0=1,...,m;
i=1,...,p). Since V = (Z*)'Z* Problem 29 implies that U;; is independent
of the Y's (and hence independent of T2) and distributed as Xi—p+1'

Note that T2 has to be read as YB(YB)', where B satisfies B'A_IB = I, that
is BB' = A. Hence ET2 = wz. Since T2 is a sum of p independent, normally
distributed random variables each with variance 1, T2 has a noncentral XZ—

distribution with p degrees of freedom and noncentrality parameter wz.
(WIJSMAN (1957))

Problem 31.

For i=1,2,...,p we must minimize Zv [Xvi - - Bi(u\)--u.)]2 over all
possible values of o, and Bi'

Let i be fixed. Then the problem reduces to the regression problem that

was studied in Section 7.6, Chapter 7. The Hypothesis H : By = ... = Bp‘= 0
obviously is a multivariate hypothesis with r=1 and s=2.

In the second paragraph of Section 7.6 is is shown that o, =X . minimizes

[Xv - - B (u -u, )] for every fixed value of B . Hence

By (33) on p. 283

. Zv (uv u )(Xv. X-i)
i T (u )2
holds.
P. 284 first formula yields Y. = B Vt (uv u, ¥2.
Hence for all i and j Yin = J Zv (uv u, )
Finally

Sij = ZV[X\)i_&'i—’éi(u\)—u')][%j—&i—éj(u\)—u‘)]

by (55) on p. 296,
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Problem 32.

Note. Because we only use column vectors, there are some slight changes in
notation.

(D) 4@

We consider a sample X ,...,X(N) from a p—variate normal distri~
bution with covariance matrix ¥. Let q < p, max(q,p~q) < N.

Partition the matrix X as follows

., I
(12) s = < 11 12) )

Iy I

. _ _ . _ (p-)x(p-q)
where le is qxq, 212 = gx (p—q), 22] is (p—-q) xq and 222 .

We test

(13) H: %2 ,=0.

It is easy to see that the problem of testing H remains invariant under the
. * . *
transformations X = X+ B, with B a p-vector of constants, and X = CX,

where C is any nonsingular p X p—matrix of the structure
c 0

(14) c=(“ )
Y

where the order of the submatrices is as in (12).

*
[Let X = CX+D be the result of a combination of both transformations.

The covariance matrix T of X is equal to ¥ = CZC' which is equal to

1
o (Cll 0 > (zll z12) (Cll 0 ) }
]
0 Cyp” Fyp Fyt 0 Gy

fl ' * *
CiFnnin CnFilary _ (le z12)

' ' * * *
C29%21%11  Ca2%22%22 1 Ty

= ' = =
2 T 0@ CE il = 08X,

. . . -1 -1
invariant. (Cll and C22 are nonsingular, so C11 and 022

c g . ' -1 v .
post multiplication of C”ZIZC22 by C11 and (022) respectively then

*
Because Zl 0, the problem of testing H is

exist. Pre and

gives 212 back.)]

Next we prove the invariance of the roots of the equation

_] _
(15) lslzszzs21 - A8 .| = 0.

1l
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Suppose that x is a sample point with covariance matrix S. Let y be a

sample point with covariance matrix T, such that y = Cx+D. Then
]
T - (Cll 0 ) (SIZ S12) (Cll 0 ) )
1

0 Cy" 8y 85" 0 Gy

1 1
) (Cllsllcll Cl]SIZCZZ>

1 1

€22521C11 €225822027

We have

-1

Ty, Ty = ATyl =0
10,1826 (€)™ '835€57C0585, €y - AC 81yl =0 -
ICIISIZS;;SZIC;I S e syl =0 e

Iy, 118,555,815 = 25,1 = 0.

Because C]1 is non-singular, it follows that the roots of
_] _
[T12T22T21 - AT]]l = 0 and of (15) are the same. Hence these roots are

invariant.

The roots are maximal invariant when the converse is also true. So
-1 _ -1 _ _

1252257, Aslll = 0 and ]T12T22T21 XTIII = 0 have the

same roots. Then there exist matrices B and C such that BS, B' = T =

11
1] -1 [ -1 ' _ . . .
CTIIC and BS]ZSZZSZIB = CT12T22TZIC = A. where A is the diagonal matrix

suppose that ]S

whose diagonal elements are the roots A. Since S;; and T;; are positive
definite there exist nonsingular matrices E and F such that S;; = EE' and
....1_‘ '

T22 = FF', Then

(BSIZE)(BSIZE)' = (CTIZF)(CTIZF)'

and it follows from the argument given in Section 10 in comnection with G2

that there exists an orthogonal matrix Q such that BSleQ = CTIZF’ so that

-1 v o=l
€,y =C B and C}, = EQF .

This proves the existence of the required transformation.

(ii) For the case q=1, the solution of (15) is, trivially,
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A =8 S_IS /S11 = Rz, which is the square of the multiple correlation

12722721
coefficient between X,, and (X ,X]p) (ANDERSON, 1958). That the
2

11 1227

distribution of R” only depends on p“ is readily seen from the formula

given in (iii).
2

(iii) Denote the density of R2 under p2 by ppZ(Rz). Then, for p% > 52

we have
2 _ 2 2\h,52\h2 /) —1
PRAED i) T EDT (4(N-1) *+h)

2y 211 e ’

po2®) (=)D T ooy hR2yhr2 (y(u-1) + 1)
0 h=0 0

which is an increasing function of RZ. Furthermore p2 is the maximal

invariant in the parameter space and the distribution of R2 depends only

on p. The UMP invariant test therefore rejects H : q=1 H : p=0 when

R2 > CO’ using the Neyman-Pearson lemma.

(iv) When p=0, R2 has a beta distribution with parameter $(N-1) and

1 (N~p). The required result follows directly from this fact.

(SIMAIKA (1941))
Section 12

Problem 33.

Igr = 1

There exists a nonsingular linear transformation B such that BA~
(= identity matrix). If Y has the Nq(n, A"l)—distribution, given by (62)
on p. 304, then Z = BY has the Nq(E,I)-distribution, where £ =
(El,...,Eq)' = Bn. That is the components Zl""’zq of Z are independently
normally distributed with means El,...,Eq and unit variance. The model
assumption n € HQ becomes & ¢ HQ = {Bn :ne HQ} while the hypothesis

n e Hw becomes & ¢ H; ={Bn :n e Hw}. Performing the canonical trans-
formation (1) we get the variable X = (Xl,...,Xq)' = CZ. The model
assumption becomes Bs+1 = ... = Bq = 0 and the hypothesis turns into

Bl = ,.. = Br = 0 where Bi = EXi'

This problem is invariant under the group G, of transformations Xi = Xi+ s

1
for i=r+l,...,s and Xi = Xi for i=1,...,r;s+l,...,q. This leaves
x],...,xr,x Xq as maximal invariants. Another group leaving the problem

5 o

s+1?
invariant is the group G of all orthogonal transformations of X

2
X[, X

12

A maximal invariant under G, is U = . se++3X . This reduces to U
2 i=1 s+1 q 9

by sufficiency. In the parameter space this reduces to Y = ZE=1 Bi as a

maximal invariant.

It follows from Theorem 3 of Chapter 6 that the distribution of U depends
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only of Y, so that the principle of invariance reduces the problem to that
of testing the simple hypothesis ¥ = 0, Since Xl""’xq are independently
normally distributed with common variance 1 and mean E(Xi) = Bi the distri~
bution of the statistic U = Z§=1 Xi is the noncentral X2 with noncentrallity
parameter {. By Problem 4 the class of noncentral xz distributions has mono-
tone likelihood ratio in . Hence the UMP invariant test rejects when

U > C. The cutoff point C is determined so that the probability of rejection
is o when § = 0. Since in this case W is the central Xi distribution, C is

determined by

Lol

é X (Mdy = a.

As in the case of an unknown common variance we find that

=
0
T Mn

2 R = ~1
Xp=(2-8) 2-8) + 2-¢) (2-¢) =

=1

G-m'AR-1) =

E-D' @Yy E-5

B

q q - a ~ 2
z Y a,.MMm.-n. .= N,
&5 1J(n1 nl)(nJ nJ)

with obvious definitions of E,E,ﬁ,ﬁ (cf. p. 304).
Section 13.
Problem 34.

Consider the restricted class of alternatives K : p « S, p# T to the
hypothesis H : p = 7. The surface S is contained in the plane M =
{(x],...,xm) | = X, =1, x; €R, i= 1,...,m}. Furthermore we have that

S, the tangent plane at 7 to § is in M, is of the form

p; = ni(1+-ailg]+ ...+-aisEs) i=1,...,m

where

(16) z a8

= 0 for all k # 1; k,1 = 1,...,s.
We first introduce some notation. Let A denote the matrix with elements

aij (i=1,...,m; j=1,...,s). Note that A can be interpreted as the
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3f;
Jacobian matrix <7ﬂﬁ;> of Section 13. Let D denote the diagonal matrix

i=1 i3 1
I denote the mx m diagonal matrix with diagonal elements m (i=1,...,m.

with positive diagonal elements dj = a?.ﬂ. (3=1,...,8), and let

Furthermore let v be the vector v = (vl,...,vm)', T be the vector W =

(w .,ﬂm)' and & be the vector £ = (& ,ES)'. The orthogonality

12" 120"

relation (16) can be written as
A'TIA = D,
i) Taking the point E such that
—;E—(v—'ﬁ—HA)'H—](v—TT-HAg) =0
yields the normal equation
oa'mn Nv-n-mf) = o.

Hence

~

A'(v-m) = DE.

Since § ¢ M, we have that A'm = 0 and it follows that

-~ m m 2
E. = X a..v.///Z a,,m,.
J i=1 31/ j=1 131

The vector of the second derivates is positive in & therefore S minimizes
<

~

2 . ~ .
- <
bX (vi Pi)//%i' The solution p need not satisfy 0 p; < 1.

ii) The test statistic (76) of p. 308 can be written as

m (5i‘“i)2 at o
n ¥ —=—>"— =nf ATAL = nf D§
i=] s

Problem 35.

LEMMA. The likelihood of a multinomial sample X ,...,%y with m classes is

x n
proportional to pll...p:m which has as maximm value <jg~)x1...(jgl> .
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n! X Xm R
PROOF. We have P(x],...,xm) o a— pll...pm . Because the geometric

mean is less than or equal to the arithmetic mean

i (p1>1$ i S T
i=1 \xi/n i=1 n  (x;/n)

Thus

m . X: \X;
I p%l < ﬁ (—4L) T,

i=f 1 q=p\ D

Applying the lemma to the multinomial situation under 9 with parameter pij

(i=1,...5a, 3=1,...,b; %, . pij = 1) the maximized likelihood is pro-

P n.,i’J
portional to II, . (_il\ 1J.
1,] n
Under w when pij =P
proportional to

! (Z, p, = Z. p! = 1) the likelihood function is
J 171 3]

n
I,I (i) M = 111 p;t IJTP:{ ]
N.
where Ni- = Zj nij’ N-j = Zi nij' Applying the lemma, Hi pil' is maximal
equal to II, (ﬂi;)Ni' and II, p!N'j to 1. <§;1>N'j . The likelihood ratio
1 n 3] J n

test therefore rejects when

N:.\Nj. N.\N.: N. N.;
I, (—l—> o, (—l> J m oN.i*q, N i
A= 4 i i i

n nJ n = o n::! < k.
R ij
I <n11> ij , n ni,j nij
ij n

Under the null-hypothesis and under alternatives of the form (81),

p. 310, -21logl is asymptotically equivalent tot‘the test of the form (83).
In the notation of p. 311, last paragraph we have s = ab-1 and
s-v=a-1+b~-1. Thus r = (a~1)(b~1) and under H, -2 log A has asym—
ptotically a xz—distribution with (a-1)(b-1) degrees of freedom.

Note. For a more detailed discussion see WITTING and NOLLE (1970) Section
2.7.3, especially Example 2.32.
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CHAPTER 8

Section 1
Problem 1.

Let B = sup [éné Eew(X)], where the supremum is taken over all level o
€

tests @ of H : 0 ¢ QH' Let {qh}:= be a sequence of level o tests such

1
that

lim inf Eewh(x) =,

e fefiy
In view of the weak compactness theorem (Theorem 3 of the Appendix) there
exists a subsequence {¢h,} which weakly converges to ¢, say. This implies
that for all 6 ¢ QH

!
Q

E 0(X lim E X) <
g@ () n}fw ewn.()

and for all 6 ¢ QK

Ee(D(X) Ill:;Lio Ee(-pnv (X) z lim it‘lf Ee'(pl’l'(x) = B.

n'se 0 Qp

Thus @ is a test with the desired property.
Problem 2,

(1) The assertion stated in (i) is not correct as is shown by the
following example.
Let the distribution of X be given by

Polx = 0} ‘

]
N
+
<D

Pe{X= 1} =14-96

e3

where 6 ¢ R = {6 : -} < < 4}, Note that Py # Pgt if 06 # 0'. A test ©

289
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for testing the hypothesis H : 6 = 0 against K : 0 > 0 is of level o if
$(0(0) + ©(1)) < a.
The power of @ is given by

G4+ 0500y + (4 - 6Hen)

Bp(®)

and has derivative

BL(®) = 367 (@(0)=0(1)) .

Since Bé(O) = 0 we have that all level o tests maximize the derivative
of the power function at 6 = 0, but it is clear that mot all level & tests
are LMP.
To avoid this kind of counter examples, we make the extra assumption that
the test which maximizes the derivative of the power functiom at 0 = 60
is the unique such test. Furthermore, we need that the test is of exact
size a.
Assume that the power function Bw(e) of any test ¢ is continuously
differentiable at 8 = 60, where differentiation may be taken under the
integral sign. Then the test @p> which maximizes 8'(90) among all size o
tests of the hypothesis H, can be found by applying the lemma of Neyman
& Pearson in the extended from and, hence, is given by

1 >

. d
@y (x) = if —5pg(x) 6=6, k pg,(x).

0 <

Assume that @, is the unique such test. We first show that 9 is LMP.

Let ® be any size o test, then Taylor expansion yields for 8 near eo

B(po(e) =g+ (9'90)5(1)0(90+n0(9—90)) for some Ny € [0,1]
and

B(p(e) =0+ (G—GO)BJ’(GO*-T](G—GO)) for some n ¢ [0,1].

Since Sé and Bé are continuous at 60, it follows that for 6 sufficiently

near 60
By B0 * (0= 8)) > Bu(8p+n(8-8)),

and hence, since 6 > 60
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ROREROR

It is clear that wb is locally more powerful than any other level o test.
To prove that a LMP level 0 test maximizes B'(@O) among all size a tests,
we first note that a LMP level o test is of size a. The result now
follows from the Taylor expansions written above.

A reference to this problem is FERGUSON (1967), pp. 235-237.

(i1) Let wo be a LMP level o test. Then, given any other level o test @,

there exists Al such that
&p (8) 2 B (6) for all 6 with 0 < d(8) < Al'
0 ©

Since Bw is bounded away from a for every set of alternatives which is

bounded away from H, there exists € > 0 such that

B@ (©) > o+e for all © with 4(8) > Al'

0
Moreover, by continuity of Bw (0), there exists a AO < Al such that
0
o < Bw (8) < o+te  for all 6 with d(8) < A..
0 0

Hence for all A < AO there exists GA with A < d(GA) < Al such that

inf B () = By (8,) = By(8,) = dnf £,(®),

for any other test . Here wp is the set of 6's for which d(8) > A.
(iii) By (i) the acceptance region of the LMP level o test @ is
1
Py(®) /py(x) < k,

i.e. in the present case

where k > 0 because o < . (If k < 0 then o = Pe=0[rejection of H] =
2
2 by . ) > =1,
1>e=0{>:J=1 xJ/(1+xJ) 0} =14
Note that the test which maximizes B'(0) is unique in the case that pe(x)
is the density of a Cauchy distribution with location parameter 6.
Since xj/(1+-x§) + 0 as xj + o, there exists M such that any point with

xj > M for all j = 1,...,n lies in the acceptance region. Hence the power
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Of wo,
By (B) = T cer ? O ()T * ﬁ (1+ (%, - 8)2)_ldx . «dx_ <
o o I : preeetdx <
o0 —o J
M M n
- 2,-1
5_{0...—{07; njgl (1+(xj—6) ) dx e+ ..dx
T m
=7 ™ T (arctan (M—6)+7),

i=1

tends to zero as O tends to infinity (cf. also FERGUSON (1967), p. 237).
It follows that the LMP test is not unbiased and hence does not maximize
the minimum power locally. (Compare the power of wo with the power of the

test ©(x) = a).
(LEHMANN (1955))
Problem 3.

The assertion stated in this problem is not correct. A counter example
similar to the example in the solution of Problem 2 (i) can easily be
given. Again we need the extra condition that the test which maximizes
B"(eo) among all unbiased level o tests is unique in order to show that
it is also the LMP test.

Assume that the power function Bw(e) of any test @ is twice continuously
differentiable at 6 = 90, where differentiation may be taken under the
integral sign. Then the test @y» which maximizes 8"(90) among all unbiased
level o tests of the hypothesis H, can be constructed using the lemma of
Neyman & Pearson in the extended form. Assume that % is the unique such
test., We first show that @ is LMP. Note that all unbiased level o tests
are of size o and have B'(GO) = 0. Let @ be any unbiased level o test,

then Taylor expansion for 6 near 8_ yields

0
8(00(9) = o+ %(9-90)28$0(90+n0(9—90)) for some Ng € [0,1]
and

B, (®) = a+§(e—eo)zs$(eo+n(e-eo)) for some n ¢ [0,1].

Since 8&0 and B& are continuousat 90, it follows that for 0 sufficiently

near 60

850(90 + no(e - eo)) > 5('[')(90 +n(6 - eo))
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and hence
Bop (@) > B(®).

The prove that a LMP unbiased level o test maximizes B"(GO) among all
unbiased level 0 tests is along the same lines as above.

A reference to this problem is FERGUSON (1967), pp. 237-238.
Section 2
Problem 4.

(i) The statement is not true, as is seen by the following example.

Let 0 < a < 1. The distribution of X is given by

PA{X =1} = u+-e4,

Pe{x =0} = I(1-0)+86,
P {X =-1} = %(1—&)—6—64,

where 8 ¢ 0= {6 : ~1(1-qa) < 8 < }(1-a)}. Note that Py # Py if 0 # 8'.
The test

©(x)

It
r—"'—:‘
"
Fh
kg
1
—

of H: 8 = 0 against 6 # 0 is locally strictly unbiased. However,

d2
B! = ——5-B (0)|,_n = 0.
Let f be a function whose domain contains an open set A c R, Suppose that

the second order derivatives of f exist at every x = (x‘,...,xn) € A. Write

3 .
fi(x) = —Kf(x) 1= 1,...,1‘1
and
32
fij(x) = Wf(X) 1,] = l,...,0,

for x ¢ A. Suppose furthermore that fij is a continuous function. Let
Xy € A and denote by M the matrix (fij(xo))' By Proposition 10 and
Theorem 6 on pp. 60-62 in FLEMMING (1965) we have
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fi(XO) =0, i=1,...,n, M 73 positive definite =
f has a strict relative minimum at Xy
and
f has a relative minimum at Xy =
fi(xo) =0, i=1,...,n, M Zs non-negative definite.

In the setting of Problem 4 application of the above result yields the

following statement.
Suppose that. for all critical functions ¢ and all fixzed 9 the
first and second derivatives

2
-55~56—*Bw(6 $)

BL(8,0) = —ag—iew(e,m, 8ol (8,9) =
exist and are continuous (w.r. t 8) in a ©-neighborhood of 60.
If for each 9, 8 (8°,9) = q, B, 1609y =a (i=1,...,1), and the
matrix (813(60 %)) is positive defintte, then ¢ s a locally
strictly unbmased test of H : = g0 against 6 # g0 at level a.
If @ te a locally strictly unbiased test of H : 80 agaznst
0 # 60 at level o, then for each 8, 8,(6%,9) = a, s %) =0

(i=1,...,r), and the matriz (B J(e ,9)) s non—negative definite
(ii) The Gaussian curvature of the power surface at 90 is given by
8 %0
{1 + I {Bé(eo,ﬂ)}z}rﬂ”

= 1(3;3<e°,0))|

because of the locally strictly unbiasedness of .

Now consider the set-up of Chapter 7, Section 1., So let 0 = (nl""’nr)’
9 = (nr+],...,ns,c), o0 = (0,...,0) and wz = _2 Zr o ni

Let (8',9') = (ﬂi,.. ,n ,0') be any alternative and let wz"o' -2 Z -1 niz
The test 9, is MP for testing Y = 0 against y = wl (that is for testlng
po(w) against pw](w)). In view of Corollary 1 on p. 67 of the book if
follows that BWO(G',0') > o. Noting that for each 9, B@ (0,9) = a by

(7) and (8) on p. 268 of the book it is seen that @, 1is (locally)
strictly unbiased.

Let 9, be any locally strictly unbiased test. Then 9, is similar and hence
(cf. Problem 5 of Chapter 7)

2 2
(1 é (B, (:07) -alda > é [Bp, (n,0%) -alda,
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r 2 -2 2

r+1,...,ns,cs;p) = {(tl,...,ts,o) P I, 0 T =07, Eol =

= ns} and A is the Lebesgue measure on S. In the following ¢

where S = S(n

LYSERE s
will be kept fixed. For short 7

.t
pe12m e oNgs0 is dropped out of our notatiomn.
Theorem 9 on p. 52 of the book ensures that for any test ¢ its power
function Sw(n],...,nr) is an analytic function of Nyseesly. Denote the
matrix (Béi(O)) by Mk’ k = 0,1. In view of the locally strictly unbiased-

ness Taylor expansion yields
-2
hll%ﬁm—a—%N%MS%W)hl

for all n = (nl""’nr) with In| < C and some constant Dk(C), only

depending on C, k = 0,1. Hence

[B, (M) -al in'Mn r .

(2) lim | —%— a4 = linm | -75;;&-—.-—dA =4 I 8o,

>0 s |n| fg aa 20 8 070" [ da i=1 "k
because

f n.n.dA = 0 for all i # j

s 1
and

22
r
Snlaa =1 5 fnfaa- 22 oaa.
S ] rJ=]S ] r S

Since for any non-negative definite matrix (le), I(le)ls i b3 (ct.
RAO (1973), p. 56), it follows by (1) and (2) that ]
(3 lEy] <1 gl < {x 33/l < iz gdI/el”
(p] - (p] - . (pl - e O] ’
i i i 7o
where the well-known inequality of the geometric and arithmic mean is used.

By the first lines on p. 269 of the book the power function of @ is of

the form
12 © oo
B, M =e ¥ ¥ a2 @whk- 5 b @HE
oM = e Zo T Ly
Hence
.. 0 if i 43
Bgp (0) = { -
0 20 "b, if i =j,
implying
r e r .
(%) { P el } - {8n 1 = | (8idy).
=1 %0 by = 1G]

Combination of (3) and (4) completes the proof.

(KIEFER (1958))
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Problem 5.

The result stated in this problem follows directly from application of
Theorem 1 of Chapter 8 with w = {D : D(0) = i}, w' = {D : D(O) < q}
where g < 4. The conditions of this Eheorem are verified as follows.

We first show that the densities f and g given in the hint correspond to
distribution functions F ¢ w and G ¢ w' respectively. The density £
defined by

_1-2q _ﬂ_”X]]
£ = 700y (]—q)

is symmetric about zero. Furthermore

i Sy -2 ¢LX=_2AL(__iy1=
@ T ity (%) -ty (%) -4

hence £ 75 a density and F(0) = }. The density g defined by

g(x) = (1-—2q>(—3—)l[x1|

1-q

satisfies

oo o x

o - G - 0 ) -
and

0 © x

Jgxdx = (1-2q) = (- ==L (1-q = q.

o x=1 \1-4 1-q

Thus g is a density also, and G(0) = q.
We now show that the MP size o test for testing f against g is the sign

test. Let X = #{ji : Zi > 0} and consider the sign test of size

- N -
o fgne 1 (e
X y=x+1 y

which rejects H when X > x and rejects H with probability vy if X = x.

By the lemma of Neyman and Pearson the MP size o test of f versus g,

based on observations Z] = z],...,ZN = zN,rejects when
N og(z)
I —— > k.
i=1 f(zi)

Since D is continuous we can assume that for each i, z; % {0,-1,-2,...}.
Then

N e(z) NN g V0T fiog\x L
27 ba- £y - (1
Jrey - ea-ot 1 () (52 o



where x = #{i : z; > 0}. Because q < &, log ((1-q)/q) > 0 and so
T[I;Ivg(zi)/f(zi) > k is equivalent with x > k',

It remains to show that this test is of size o for testing H against K,
and that its minimal power over K is ‘attained against g. The first re-
quirement is trivially satisfied, and the second follows from the fact

that the power

v(§)c1 - 000" + ygxﬂ (Mt - o0 Y0
is non-increasing in D(0). This follows from Lemma 2 on p. 74 of the book
and the fact that N) ey(l—B)N_y has monotone likelihood ratio in y with
respect to 0 = ]—-D}(’O) (cf. Example 2 on p. 70 of the book).
It follows that the sign test is maximin for testing D(0) = } against
D(0) < q.

(RUIST (1954))
Problem 6.

First note that pe(x) has monotone likelihood ratio in x iff

3 3
X < %, =55 log pe(xl) < 55 log pe(xz).

In the present case we have
fe(x) = 0g(x) + (1-0)h(x) = h(x){06G(x) +1 -8},

where G(x) = g(x)/h(x). Since

9 _ G(x) ~1
56 1°8 £o(®) = gEry 77 ¢
we have that fe(x) has monotone likelihood ratio in x iff
G(x,) -1 G(x,) -1
X. < x. = 1 < 2
1 2 6G(x])+1-—6 - 9G(x2)+1—6 ?

X, < X, = G(Xl) < G(xz).

(It is assumed that g(x) and h(x) are densities.)

297
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Problem 7.

Interpreting ge(x;E) as the conditional density of x given &, and he(g)
as the a priori density of &, let pe(E;x) denote the a posteriori demsity

of £ given x, i.e.
Pe(EsR) = g (x3E)hg (E) /p (x) -
We assume that the joint density of x and £,
£9(%,8) = gg(x;E)hg(E),

is positive for all x, & and 9.

Consider any fixed x < x' and 6 < 8", then we must show that

(5) pe(X')/pe(X) < pe'(X')/pev(X)-
Since
' go(x"38)
pe(x )/pe(x) = ?e(—x';‘é-)_pe(g;x)d\)(g),

and a similar expression holds for 8', it follows that (5) is equivalent
to

ge(x';g) ge'(xv;g)
gDy P SWD® < [ =y (E30av(D).

By assumption (a) it is enough to prove that
gg (x'3E)
D = -ggz;zzj*-[pe'(g;x)"De(g;x)]dv(g) z 0.
Now define for x, 6 and 6' the sets S = {£ : pev(E;x) < pe(E;x)} and
st = {€ : pe,(g;x) > pe(E;x)}. Then for any £ ¢ S and E' ¢ st we have

Pgr (E3%) Pgr (E'5%)
—_——— <] < e
Pg(€3%) P (E'5%)

Bo' (Ehg1 () g1 (38" Vhgr (E1)
B (®) g (GEMRGED)

and hence by assumption (b) we must have that

E<E' forallfes, & cs.
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Thus by assumption (c) we have

(6) fes b e st e 0D B D
IR 8o (x30) | gg(x:ED)

Now define

-1 ge(x' HY] ,
a= (SI_ lpg(Esx) -pe'(E;x)]dv(£)> Sf__ —ge—(gg)——[pe(é;x)—pe (&3%) 1av (&),
and
-1 ge(x';E)
b = <g; [oev(ﬁ;X)-oe(E;X)]dv(Sﬂ é& 2&3}225——[De'(g;x)‘pe(g;x)]dv(g),

then by (6) it follows that a < b.

Hence

=
I

= -a [ [pg(Es) - pg1(E5:) JAV(E) +b [ [pgr(E53x)-pg(E5x) 1AV (E) =
8 8

(b-a) [ [pgr(E5%) - pg(Esx) 1dv(E) = 0,
g+
which was to be proved.
(LEHMANN (1955); see also footnote on p. 346 of the book)
Problem 8.

We first prove a general result on exponential families. Let Xl""’xn

be a random sample from the exponential family
Pg(x) = C(6) exp [Q(O)T(x) Ih(x)

(w.r.t. some o-finite measure u) in which Q(9) is an increasing function

of O, Consider, for testing H : 6 = 60 against the alternatives K : 6 < 81
or 6 = 62 where 81 < 60 < 62, the test of (exact) size o based on

n

Tn = Zi=l T(Xi) of the form
1 :'Lft<l:]0rt:>t2
@(t) = Y; ift=ti, i=1,2 .
0 ift]<t<t2
Choose Yi =0 if P{Tn = ti} =0, i=1,2, and choose tl and t2 as small

as possible if this gives an equivalent test. We call such tests

"natural two-sided tests (of size a)". Note that by the size requirement,
(tz,YZ) is determined uniquely by (tl’Yl)’ and the tests can be ordered
lexicographically by (tl’Y])'
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Then

(a) For any test of size s o of K against K, there exists a natural
two sided size o test which is uniformly at least as powerful.

(b) There exists a point 635 (61,62) such that the power function of a
natural two-sided test is non—increasing in 0 for 6 < 63 and non-
decreasing in 9 for 6 > 64

(e¢) For increasing (t],Y]),the power against alternatives < eo is non-
decreasing and the power against alternatives > 80 s non-increasing.

(&) If for sample size n a natural two-sided size o test exists with
power 2 B > o at 6‘ and 62, while for sample size n—~1 one exists
with power < B at 6] and 62, then n is the smallest size admitting

a size o test of power = B of H against K.

n
1o T(X;). We

note that Tn also has a distribution from an exponential family with the

PROOF: By sufficiency we may consider tests based on Tn =X

exponential part of the density of Tn equal to exp [Q(G)tn]. So without
loss of generality we consider (for part (a) to (c)) the case n = 1. Now
we see that (a) is a consequence of part (i) of Problem 8 of Chapter 4.
Statement (b) follows from the proof of Theorem 6 (iii) of Chapter 3.
Statement (c) follows by applying Lemma 2 of Chapter 3 in the same way
as is done on p. 90 of the book, after the proof of Theorem 6, (or see
solution of Problem 8 (ii) of Chapter 4). For part (d), note that by
sufficiency we always prefer a test based on Tn to one based on Tn-l'
Thus if no test of power B exists at sample size n-1, it does not exist
for smaller sample sizes either. By (c), we can at sample size n-1 only
attain power B at 61 at the cost of still lower power at 62 or vice~
versa. Thus power 2 B at all alternatives in K cannot be attained. By
(b), at sample size n the test under consideration has power 2 B at

all alternatives in K. 0
Now we turn to the cases described in the problem.

(i) The above result is directly applicable. Trial and error gives
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Ppp Py Py ™t t Yy Yy Bl Bley) Blpy)
21 3 68 26 42 .39 .39 .05 796 796
69 26 43 .86 .86 .05 .805  .805
¢ Lz 71 21 37 .25 .42 .05 795,797
72 21 38 .63 .92 .05 .803  .802
s 5 &£ | 82 17 3 .82 .39 .05 797 .79
83 18 3 .09 .07 .05 .803  .803
SR S 111 15 33 .58 .68 .05 798 .798
112 15 33 .76 .45 .05 .803  .803
1 1 2
= 4+ & 203 13 32 .82 .25 .05 799 .799
204 13 32 .92 .12 .05 .803  .802

The required minimal sample sizes are therefore 69,72,83,112,204; smaller

Py requiring smaller sample size.

(ii) Application of Example 4 on p. 332 of the book shows that we may
restrict attention to tests based on the statistic Z?=1 (Xi—SOZ, which

is distributed as Ozxi_]. Inspection of the table of the UMP unbiased test
in the solution of Problem 5 of Chapter 4 shows that n = 46 is the minimal

sample size.

In the references to Chapter 8 it is stated that LEHMANN (1955) is
relevant to this problem. However here only one-sided alternatives are

considered.
Problem 9.

We show that for every test the power function is continuously differentiable
at 6 = 0 and that the derivative of the power function at 6 = 0 is maximized
by the sign test. Since the sign test need not be uniquely defined for
certain levels o it does not follow that the sign test is LMP (see

Problem 2 (i)).

We first consider a somewhat more general situation. Let Xl""’xn be

i.i.d. with density f£(- - 6) and consider testing 6 < 0 against 6 > 0.

Let f be absolutely continuous with respect to the Lebesgue measure with
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derivative f£' such that £'/f is continuous Lebesgue-a.e. and f ]f" < o,
Using Vitali's theorem (cf. KLAASSEN (1979)) one can see that for every

critical function @ the power function is differentiable

d 7 co..dx =
.d_e_j . J(p(xl’,.,,xn) j_E] f(xi—e)dxl .o dxn =

I Iw(xl’...’xﬂ) z f(x' e) H f(x' e)dX] ceocdx .
i=1 =1
Since

n f' n B
3] Jotxp,...x) 151 F(x; = 9) 121 £(x; - 0)dx,-...-dx | =

n £! n
oo Jotx 40,0 #0) 5 =) T EGxddxgcedi

i=] i=1
snf [f'] <o,

the dominated convergence theorem yields the continuity of the derivative

of the power function. Maximizing

n g n
[ O(x 500 05%) izl-q?(xi) iEI f(xi)dxl.....dxn

under
n
f R f w(x],...,xn) igl f(xi)dxl'...'dxn = q,

we see by the lemma of Neyman & Pearson that the derivative at 8 = O of

the power function is maximized by tests which reject for large values of

n £
iE] "T(Xi) H
and only by such tests.

1] -
Since - 1%—(x) = sign(x) for f(x) = e le our assertion has been proved.
Section 4
Problem 10.

In accordance with our convention that all vectors are column vectors,

we consider here the transposes of X, Y and A; i.e. we write X =
(Xl,...,Xp)' etc. We assume that X and Y are independent and multivariate
normally distributed with means zero and covariance matrices $ and A i

respectively, where ¥ is nonsingular and A > 0. We shall continually
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identify members g of some group G of transformations on a Euclidian
space with their concrete representations as a matrix or vector of real

numbers.

(p)

(i) Consider the group G of traﬁsformations on (ilRp)2 defined by

(x,y) s (Ax,Ay) where A is a p xp nonsingular matrix with a;; = 0 for

i < j. By nonsingularity a;s # 0 for all i. Clearly any testing problem

concerning A is invariant under this group. For such a matrix A let

A,

q'th row of A, the other rows being equal to the corresponding E;YS of
is

..,Ap be p x p matrices such that the q'th row of Aq equals the

the p xp identity matrix. Since Ax = A Az-...'Apx we see that G

1
generated by the groups Gép) of transformations (x,y) = (Aqx,Aqy);
q

g=1l,...,p.
First we shall consider, for arbitrary 1 < q < p, the group GéQ) of

transformations on Cmq)z. Note that any set of Lebesgue measure zero
contained in CRq)Z is also assigned probability zero by the distribution
of ((Xl"

..,Xq)',(Yl,...,Yq)'), whatever the values of A and $. Now an
element A of qu is equal to the qx q identity matrix with the bottom

row replaced by the transpose of some vector a. Under A, (x,y) ¢ Cmq)z

is transformed into ((xl,...,xq_],a'x)',(yl,...,y 1,a'y)'). Clearly

q-

((xl,...,x 1)',(yl,...,y _1)') is invariant under Géq). Consider two

elements (x,y) and (x*,y*) of (]Rq)2 which are on the same orbit under

G(q). Thus there exists a vector a such that

N a'x = x;, a'y=y

* * .
. o= X, .=y, < q.
(8) X x5, y;=y; foric<gq

We shall show that for almost any (w.r.t. Lebesgue measure) (x,y) and
(x*,y*) satisfying (8), a vector a can be found such that (7) holds too.

()
q H]

Thus ((xl,...,xq_l)',(y],...,y 1)') is not only invariant under G

but also equivalent (in the segce of p. 225 of the book) to a maximal
invariant. (In fact we could determine a maximal invariant T such that
T(x,y) = ((x],...,xq_])',(yl,...,yq_])‘) for almost all (x,y) € GRq)z,
and T(x,y) = ((xl,...,xq_])',(y],...,yq_l)',S(x,y)) for the remaining
(x,y) for some function S.) Outside of a set with Lebesgue measure zero,

we have %y # 0 and Yq # 0, and for some i < q
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xi/xq # yi/}’q-

Solving for aq in (7) we find

9 i -5 e =iy -5 ey
a= x /%, Z ax; /%, = y/y, = 2;¥;/v4
so that
(10 o Yy =95 e lr = yily )
) *q'¥q T ¥q!Yq T 2 2i/%g T YY)

Thus starting with almost any (x,y) and (x*,y*) satisfying (8), we can

find a],...,aq_lsuch that (10) holds, and we can define aq by (9). More-

over, for almost any (x,y) and (x*,y*) we can ensure that a, # 0. We have

thus finally determined a such that (7) holds.

For q = 1, (x],y ) (a 1%p02 1yl) Defining y]/xl = o if X, = 0, we have

that yl/x is a max1ma1 invariant under G(])

We now combine these results by using the facts that G(P) is generated by
(p) ey G §p) and that Gép) can be identified with Géq); qg=1,...,p.

Conslder for fixed p > 1 the induction hypothesis for induction on k,

that ((x],.. »X _k) ’(yl""’yp-k) ) is an invariant statistic, equlvalent

to a maximal invariant under the group of transformations on CRP) generated
by G(p) (Ei+1; -1, (p)
varlant statistic with Ggpkk). Then by an easy mod1f1cat10n of Theorem 2

«vesp-1. We can identify G actlng on this in-
of Chapter 6 and the result just proved for Géq) for k < p~1, it follows

that ((x 1) ,(y],.. »Y k- 1) ) is an invariant statistic,

1o p—k-

equivalent to a maximal invariant, under the group generated by

(p) G(p)
.

5o . For k = p~1 it follows that y]/x] possesses the same
propertles. Slnce the induction hypothesis holds for k = 1, it follows
that, for p > 1, yI/x1 is an invariant statistic, equivalent to a maximal
invariant under G(p). For p = | this result has already been proved.

By Theorem ! of Chapter 6, any invariant test is equivalent to a test which
is a function of the invariant statistic Z = Y]/Xl which has the Cauchy
distribution with location parameter O and scale parameter vA. The

likelihood ratio for testing A = AO against A = A] is therefore
2 2
;/A17A0 (]+Aoz )/(1+Alz ),
which is easily verified to be a monotone increasing function of 22 for

0 < AO < A]. Thus an UMP invariant test is to reject H : A < AO in favour
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of K : A> AO (or K : A2 Al > AO) when Y%/X% > ¢, where cAO is the

1-0 percentile of the F distribution (see also Problem 33 of Chapter 3).

1,1

(ii) By Problem 1 a maximin test does exist. By Theorem 2

(»

(Hunt-Stein) and Lemma 2 of Chapter 8, if the group G satisfies the
conditions of Theorem 2, then there exists an almost invariant maximin

test for testing H : A < AO against K : A 2 A] (0 < Ao < Al)' By Corollary 1
to Theorem 4 of Chapter 6 (p. 226 of the book) the UMP invariant test
constructed in (i) is also UMP almost invariant, and hence will be the
required maximin test.

We shall verify the conditions of the Hunt-Stein theorem by verifying

it for the groups Gép),Gég;l) ,Ggl)

remarks on p. 338, of the book, following Example 7, this is a valid

seen in turn. As indicated in the
procedure. As for the group Géq), we shall show, by following the hint,
that it is isomorphic to a scale-translation group, and therefore by an
extension of Example 7 the Hunt-Stein theorem holds for it too (the
measurability assumptions of the theorem are everywhere trivially satis-
fied since we are working with continuous mappings in Euclidian spaces).
Of course Example 7 has to be applied in two steps corresponding to the
scale group and the translation group respectively.

As in the hint, let a' and b' be the bottom rows of two matrices A and B

(@)

corresponding to two elements of Gq . Then the bottom row of the matrix

AB has elements

b b

(a]+ aqb],a24'aqbl,...,a + q—l’aq

q-1" %q @

Now consider a ¢ RY as the transformation oniqu“1 defined by

] 1]
(xl,...,xq~1) % (aqxl*-al,...,aqxq_1+-aq_l)
(i.e. a scale change on all coordinates by the amount aq, followed by a
translation by the vector (al,...,aq_l)'). Then we see that under the

transformation a followed by the transformation b we have

A} 1
(xl""’xq—l) EEZ (bq(aqx]1-a])-Fbl,...,bq(aqxq_l4-aq_1)-+bq_l)
= 1
(baaqx]-+b1-+a]bq,...,bqaqxq_l-+bq_1-+bqaq_1) ,

G(q)

Y
i.e. is isomorphic to the "transpose" of the group of positive or

negative scale changes and translations. Generalizing Example 7 to the
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group of arbitrary translations (not just translations by (g5-.+.58)") and
to positive and negative scale transformations and applying the remarks

following Example 7, gives the desired result.

In the references to Chapter 8, LEHMANN (1950) is supposed to be relevant
to this problem. This article contains a statement of the Hunt-Stein
theorem together with the statement that it is applicable to translation
groups, scale groups, finite groups, or products of such groups. For

proofs of these statements the reader is referred to HUNT and STEIN (1946).

A more natural group to consider here would be the group of transformations
by all nonsingular matrices A, not just matrices with zero elements above
the diagonal. However Example 10 on p. 231 of the book shows that when

P = 2, the only invariant size o test is @ = q
Problem 11.

Let @ be any test of size < o. By Theorem 2 of Chapter 8, there exists

an almost invariant test | such that
inf Eéew(x) < Eew(X) < sup Eéew(x) for all 6 ¢ Q.
4 G

By the right hand inequality, we have for any 6 « QH

EP(X) € sup E_ @(X) < sup E 19(X) < a,
6 — ge ] e
G 8 e
H
so P is also of size < q.
Now since ¢b is an UMP almost invariant test of size o with respect to G
it follows that for any 9 ¢ QK

W(OE(X) + u(B) 2 w(OEGW(X) + u(9)

v

w(0) i%f Egem(x) + u(B) = i%f [w(Ee)Egem(X) + u(g) ]

v

inf [w(e')Ee.w(x) +u(@")]1.
9'€QK

Therefore @, maximizes

inf [w(e)Ee(p(X) + u(6)]
GEQK

as was to be proved.
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Section 5

Problem 12.

Let
§ = int [sup (BX(0) - 8 <e>>],
Beflg
where the infimum is taken over all level o tests @ of H : 6 ¢ Q. Let

H
{mn}:=1 be a sequence of level o tests such that

lim sup (B (®) - w (8)) = 8.
n>o eeQK n

In view of the weak compactness theorem (Theorem 3 of the Appendix) there
exists a subsequence {mh'} which weakly converges to ¢, say. This implies

that for all 6 € QH

eq)(x) = lim Eecp (X) £ a

n 300

and for all 8 ¢ QK

By(8) - B,(8) = Lim BI(8) - B¢ ,(O)

n'>»o

lim sup (B ) -8
n'ro QEQK

IA

o (9 =

Thus ¢ is a most stringent level o test.
Problem 3.

Let QK = | QA and s;(e) = constant = A; say, for 0 ¢ QA' Since wA maximizes

the minimum power over QA, we have that ®p minimizes over all ¢

max (A~ (8)) = max (B(8) - B,(8)).
QEQA GEQA

But @) does not depend on A. Therefore @) minimizes over all ¢

max max (B (9)-8 (6)) = max (B (9)-8 o).
A eeQA Beflk

Thus ¢ = ¢h is most stringent for testing 0 ¢ QH.
Problem 14.

We first show that the envelope power function of the permutation test

of the problem is constant on each of the two-point sets QA specified in
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the hint. Therefore, we first note that the two sample problem with joint
density given by (56) of Chapter 5 (complete randomization) is a special
case, ¢ = 1, of randomization within each of c subgroups having joint
density (62) of Chapter 5. By the italicized remarks on p. 196, the

most powerful test of the null hypothesis H against a simple alternative
with £ > n is the one-sided permutation test (54) of Chapter 5 based on
large values of Z?=] Yj' By the remarks on p. 188 concerning the case

¢ = 1, this is exactly the same as the one-sided permutation test (55)
based on large values of the Student's t-statistic or equivalently on
large values of Y-X. By changing the sign of all Yj's and Xj's, we see
on the other hand that the most powerful test of H against a simple
alternative with £ < n is based on small values of the same statistic.

Furthermore, for given m, n and o, the power of these two tests against

the corresponding alternatives depends only on IE"n .
It follows from Problem 13 that the two-sided version of this test is
most stringent if it is maximin for testing H against QA. We shall verify
the maximin property by showing that the test is most powerful against
the symmetric mixture h' of the two densities in QA’ which one would
expect to be the least favourable mixture. We shall take no mixture

over distributions in the null-hypothesis, and need therefore the

following obvious modification of a part of Theorem 1 on p. 327:

For any distribution \' over B', let @y 1 be the most powerful
test of the composite null-hypothesis w against

B = [ py(x)d)' (8),
w'

and let BA' be its power against the alternative h'. If there
exists A' such that

(11) 12? Ee(D)\v(X) = B)\’ ’
then ¥y 1+ maximizes igf Eew(x) among all level o tests of the
hypothesis H : 0 € w.

Note that the test we hope to find in this way, the two sided version
of test (55) of Chapter 5, does have property (11), since its power
against each alternative in w' = QA and hence also against h' is the
same.

Now, by the remarks at the bottom of p. 195, when A' assings
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probability } to each of the alternatives in QA’ the test ¢y is given
by .(52) of p. 185 with h(z), i.e. h'(x) above, given by

_ -N _ 1 (3 _ 2 a 32
h(z) = $ (Y27 0) {EXP[ > (J,El (Xj EPT o+ j)=:1 (Yj n) )] +

(B a-ep? e B o))}
=3 ., <j§1 R )
-N ] m n 2 I m 2
= (V27 o) {exp [—;0—2 (jzl (xj—;+m6) +j§1 (Yj—C— m—ﬂ;é) )] +
1 m n 2 o m 2
+ exp [—2—0_'2'<J§] (XJ_C_?E:HS) +j§] (Yj—(_,+ ma) )]}
N
= (V27 o) N exp [—2—;7 (JE] (z —Z;)2+ ﬁ(Sz)] X
X {exp [——-———6—7 (n I)IZI (X.—C)—m_g (Y.—C))] +
(mtn)o” N =1 J =1
[ (0 E &-0-nz a-0)))
+ —_— .=-7)-m J
o (m+n)02 nj=| J : =1 ]
-N 1 (¥ 2 . m 2
= } (VY21 0)  exp [—g (J_);l (zj—r,) + g © )] X
x {exp [————6—-——2— |Y—§|] + exp [———g-——i- |?—§|]}
mn (m+n) ¢ mn (m+n) ¢

Thus we see that the most powerful test of w against h' is the permutation

test with rejection region

IY-%| > clt(z)].

In the article by LEHMANN and STEIN (1949), the result of Problem 13 is
also given as a theorem quoted from HUNT and STEIN (1946).
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PREFACE
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fessor Lehmann’s fundamental book “Testing Statistical Hypotheses”. The
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cluded that these solutions might be worth publishing and that this could be
done with some extra effort. (We now feel, though, that “some extra effort” is
something of an understatement.)

The present text is based on the problems as they appear in the first (1959)
edition of the book. Though the second edition ( 1986) with extra problems has
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readers of the second edition in the matter of changed problem numbers. we
include a separate addendum with a cross-reference list (see pages 311-319).
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CROSS-REFERENCE LIST,

Part 1: Changes in new edition with respect to the old one.
Only those problems, which have been changed or renumbered in the new edJ-
tion of Professor Lehmann’s book Testing Statistical Hypotheses are men-

tioned in this cross-reference list.

CHAPTER 1.
Section & probiem changes
in new edition
Section 2 1 *
Section § 2 "
3 .
a .
6 ok/o7
Section & 7 N
Section 9 18 *
Secuon® probiem changes
in new edition
Section 2 3 N
Section 3 4 o3
Section 7 14 o3
15 ot/
16 ol$
SectionF probiem = changes
in new edition
Section 2 1 N
2 ol/*
3 02/"*IN
4 N
5 o3
1 09
Section 3 12 N
13 N
14 0i0
15 oilse*
Section 4 16 0l2
Section 7 26 022
27 N
28 223/°
29 D247
'.U ')25/-'
31 226
Secuon Y I8 033
Add. Prob. 19 N
s3 N
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CHAPTER 4.
Section problem 3t changes
in new editon
Section ! 2 "
Section 3 12 N
13 N
Secton 5 18 b
19 N
20 ol9
21 020
n N
3 a2l
Section 8 p2) N
Add. Prob. 36 N
CHAPTER 5.
Section# problem= changes
in new cdition
Section 2 8 e
Section 4 14 N
Section 5 24 N
Section 6 25 ol4
% ol5
27 ol6
28 ol7
29 N
30 N
Secuon 7 3 ol8
32 0i9
Section 8 33 020
Section 9 34 N
43 N
Section 10 44 021
Secuon 11 45 022
46 023/°"
Section 12 47 024
Section 13 54 o3l
Section 14 55 N
63 N
Section 15 64 032
65 033
66 034
67 035
68 036/°*
69 N

Add. Prob. S N




CHAPTER 6.
Section problem = changes

in new edition
Section 4 9 oil

10 oil

11 ol2
Section 5 12 oi3
Section 6 13 N
Section 7 20 N

% N
Section 9 27 020

35 o028/%

39 032/%e
Section 10 ! 036/

a8 odl/e
Section 11 51 odd/ 045

52 N

53 046

54 o047
Section 12 55 N

65 N
Section 13 66 048

67 049
Add. Prob. 68 N

8l N
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CHAPTER 7.
Section & problem = changes

n new edition
Section | 4 .

6 N

7 N
Section 2 8 06

9 o?

10 o8

1 N

12 N
Section 3 13 o9

14 oi0

i5 [\11VAddd

16 N

2 N
Section 6 2 oi2

23 N

24 N

25 oi3
Section 7 30 618
Section 8 3 N
Section 10 47 N
Section 11 48 oi9
Section 12 52 o23

53 N
Add. Prob. 7 N
Section & problem # changes

in new edition
Section 2 1 07.24

7 07.30/
Secuon 3 8 N
Section 6 34 N
Secuon 7 35 07.33/°"

36 N
Section 8 37 07.34

38 N
Add. Prob, “ N

45 07.32/*

36 N

47 N




CHAPTER 9.

Section & probiem = changes
1n new edition
Section | 1 08.1
2 0B2/"e*
3 N
Section 2 4 o84
9 oBY/**
Section 3 10 N
Section 4 18 N
Section 5 19 08.10
Section 6 1‘5 68.!4
Add. Prob. 24 N
» N
CHAPTER 10.
Section# problem# changes
in new edition
Section 1 1 N
Section 4 30 N

Explanation of the symbols used in the preceding tables.

3

Symboi meaning

ok Nothing has been changed

N This problem is a new one

06 This problem was problem 6 of the same chapter in the old edition
o7.6 This problem was problem 6 of chapter 7 in the old edition

" Only small or irreievant changes have been made

e A few relevant changes have been made

i The problem has been changed aimost compietely

5
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Part 2: Notes about the changes mentioned in the preceding part of the cross-

reference list.

Chapter# problem st changes Note

Section 3 in new edition

Section 1.5 3 b i) ‘Let @ be d’ has been skipped

Section 1.5 4 d The general case has been skipped

Section |.5 [ ok/o7 6 (iii} is problem 7 from old edition

Secnon 1.9 18 * The density has been changed

Section 2.7 15 old/** ‘For any 4 ... space’ has been added

Section 3.2 2 ol/* A hint for (i) has been added

Section 3.2 3 02/"*/N The density has been changed: (iii) (o (vi) have been added

Section 3.3 15 oll/* ‘then’ has been replaced by “if and only if’

Section 3.7 7 N is probi ins the definitions used in 28 and 29

Section 3.7 b2 023/* ‘Polya type’ has been repiaced by 'STP

Section 3.7 29 024/* ‘Polya type’ has been replaced by ‘STP

Section 3.7 30 025/ The conditions have been changed

Section 4.1 2 . “critical levels” has been changed in “p-valucs’

Section 4.5 18 - Part (iif) has been changed

Section 5.2 3 . Part (i) has been skipped

Section 5.11 46 023/** Part (ii) has been added and the hint has been extended

Section 5.15 68 036/* ‘in the sense of Section 11" has been skipped

Section 6.9 35 028/°* ‘A jevel ... integer’ has been added

Secnon 6.9 ¥ 032/*** Part (i) has been changed and part (iii) has been added

Section 6.10 43 036/ ‘under ... conditions’ has been added

Section 6.10 48 o041/ ‘regression’ has been added

Section 6.11 51 044/ 045 Part (i) is problem 45 in old edition

Section 7.1 4 - Another formuiation has been used

Section 7.3 15 oll/s=e For part (i) and pant (ii) another formulauon has been used
and part (iti) has been added

Section 8.2 7 07.36/* The utle ‘Null ... T** has been added

Section 8.7 35 07.33/°* The hint has been skipped

Ad. Pr. Ch. 8 45 07.32/* The title ‘“Tesung ... independence’ has been added

Section 9.1 2 08,2/ Parts (i), (ii) and (iii) have been added and parts (ii) and (iii)

in the oid edition have become parts (iv) and (v} in the new on
Section 9.2 9 08.9/** ‘provided ... nonrandomized® has been added
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Part 3: Changes in the numbering of the problems in the old edition with
respect to the new one.

Those problems in the old edition that also appear in the new one under the
same number are not mentioned in this part of the cross-reference.

CHAPTER 1.

problem# problem =
in old edition in new edition
7 6 (idi)
CHAPTER 2.
problem3r problem#
in old edition in new edition
3 4
s 16
CHAPTER 3.
problem# problem
in old edition in new edition
1 2
2 3
3 5
1
i0 14
2 2%
23 28
13 8
34 X
39 X
CHAPTER 4.
probiem problem
in old edition in new edition
12 X
13 X
i9 20
20 21

21 23
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CHAPTER 5.

prodlem = prodlem=
in old edition in new edition
14 25

s 26

16 27

17 28

i8 3

9 32

20 33

21 44

31 54

32 64

36 68
CHAPTER 6.

problem= probiem
in old edition in new edition
9 X

10 9

11 10

12 1

13 12

20 7

43 50

44 Sty

45 51 (i)

46 53

47 54

43 66

49 67
CHAPTER 7.

problem# problem#
in old edition in new edition
6 8

7 9

8 10

9 13

10 14

11 15

12 2

i3 25

8 30

19 48

23 52

24 3.1

30 X7

B X

32 345

33 835

34 3.37




kg

problem# problem

in oid edition tn new edition
t 9.1

2 92

3 X

4 94

9 99

10 9.19

14 923

Explanation of the symbols used in the preceding tables.

-Symbol meaning

4 Problem 4 in new edition

8.1 Problem 1 of chapter 8 in new edition

X This problem has been skipped in the new edition
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